2
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 1325] [Impact Index Per Article: 265.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
6
|
Hoffmann F, Li DW, Sebastiani D, Brüschweiler R. Improved Quantum Chemical NMR Chemical Shift Prediction of Metabolites in Aqueous Solution toward the Validation of Unknowns. J Phys Chem A 2017; 121:3071-3078. [PMID: 28388058 DOI: 10.1021/acs.jpca.7b01954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A quantum-chemistry based protocol, termed MOSS-DFT, is presented for the prediction of 13C and 1H NMR chemical shifts of a wide range of organic molecules in aqueous solution, including metabolites. Molecular motif-specific linear scaling parameters are reported for five different density functional theory (DFT) methods (B97-2/pcS-1, B97-2/pcS-2, B97-2/pcS-3, B3LYP/pcS-2, and BLYP/pcS-2), which were applied to a large set of 176 metabolite molecules. The chemical shift root-mean-square deviations (RMSD) for the best method, B97-2/pcS-3, are 1.93 and 0.154 ppm for 13C and 1H chemical shifts, respectively. Excellent results have been obtained for chemical shifts of methyl and aromatic 13C and 1H that are not directly bonded to a heteroatom (O, N, S, or P) with RMSD values of 1.15/0.079 and 1.31/0.118 ppm, respectively. This study not only demonstrates how NMR chemical shift in aqueous environment can be improved over the commonly used global linear scaling approach, but also allows for motif-specific error estimates, which are useful for an improved chemical shift-based verification of metabolite candidates of metabolomics samples containing unknown components.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University , Columbus, Ohio 43210, United States
| | - Daniel Sebastiani
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Bekçioğlu G, Allolio C, Sebastiani D. Water Wires in Aqueous Solutions from First-Principles Calculations. J Phys Chem B 2015; 119:4053-60. [DOI: 10.1021/jp5121417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gül Bekçioğlu
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Christoph Allolio
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, CZ-16610 Prague 6, Czech Republic
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Chen S, Navizet I, Lindh R, Liu Y, Ferré N. Hybrid QM/MM Simulations of the Obelin Bioluminescence and Fluorescence Reveal an Unexpected Light Emitter. J Phys Chem B 2014; 118:2896-903. [DOI: 10.1021/jp412198w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shufeng Chen
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
- Aix-Marseille
Université, CNRS, Institut de Chimie Radicalaire (UMR-7273), Marseille 13397, France
| | - Isabelle Navizet
- Laboratoire
de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS. 5 bd Descartes, 77454 Marne-la-Vallé, France
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, PO
Wits, Johannesburg 2050, South Africa
| | - Roland Lindh
- Department
of Chemistry − Ångström, Uppsala University, P.O. Box 518, SE-751 20 Uppsala, Sweden
- Uppsala
Center
of Computational Chemistry - UC3, Uppsala University, P.O. Box 518, SE-751 20 Uppsala, Sweden
| | - Yajun Liu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Nicolas Ferré
- Aix-Marseille
Université, CNRS, Institut de Chimie Radicalaire (UMR-7273), Marseille 13397, France
| |
Collapse
|
10
|
Dračínský M, Möller HM, Exner TE. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions. J Chem Theory Comput 2013; 9:3806-15. [PMID: 26584127 DOI: 10.1021/ct400282h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Car-Parrinello molecular dynamics simulations were performed for N-methyl acetamide as a small test system for amide groups in protein backbones, and NMR chemical shifts were calculated based on the generated ensemble. If conformational sampling and explicit solvent molecules are taken into account, excellent agreement between the calculated and experimental chemical shifts is obtained. These results represent a landmark improvement over calculations based on classical molecular dynamics (MD) simulations especially for amide protons, which are predicted too high-field shifted based on the latter ensembles. We were able to show that the better results are caused by the solute-solvents interactions forming shorter hydrogen bonds as well as by the internal degrees of freedom of the solute. Inspired by these results, we propose our approach as a new tool for the validation of force fields due to its power of identifying the structural reasons for discrepancies between the experimental and calculated data.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 166 10 Prague, Czech Republic.,Department of Chemistry, Durham University , DH1 3LE Durham, United Kingdom
| | - Heiko M Möller
- Department of Chemistry, University of Konstanz , 78457 Konstanz, Germany
| | - Thomas E Exner
- Department of Chemistry, University of Konstanz , 78457 Konstanz, Germany.,Theoretical Medicinal Chemistry and Biophysics, Institute of Pharmacy, Eberhard Karls University Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|