1
|
Tian Y, Ma S, Wen L. Towards chemoenzymatic labeling strategies for profiling protein glycosylation. Curr Opin Chem Biol 2024; 80:102460. [PMID: 38678979 DOI: 10.1016/j.cbpa.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Protein glycosylation is one of the most common and important post-translational modifications of proteins involved in regulating glycoprotein functions. The chemoenzymatic glycan labeling strategy allows rapid, efficient, and selective interrogation of glycoproteins. Glycoproteomics identifies protein glycosylation events at a large scale, providing information such as peptide sequences, glycan structures, and glycosylated sites. This review discusses the recent development of chemoenzymatic labeling strategies for glycoprotein analysis, mainly including glycoprotein and glycosite profiling. Furthermore, we highlight the chemoenzymatic enrichment approaches in mass spectrometry analysis for three classes of glycan modifications, including N-glycosylation, O-GlcNAcylation, and mucin-type O-glycosylation. Finally, we highlight the emerging trends in new tools and cutting-edge technologies available for glycoproteomic research.
Collapse
Affiliation(s)
- Yinping Tian
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shengzhou Ma
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liuqing Wen
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Long Y, Li Z, Wang L, Ao X, Zhang Z, Chen Q, Zhu D, Liu X, Liu R, Chen B, Zhu H, Su Y. Highly efficient identification of nucleocytoplasmic O-glycosylation by the TurboID-based proximity labeling method in living cells. Biotechnol J 2024; 19:e2300090. [PMID: 37897200 DOI: 10.1002/biot.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Glycosylation is a ubiquitous posttranslational modification and plays an important role in many processes, such as protein stability, folding, processing, and trafficking. Among glycosylation types, O-glycosylation is difficult to analyze due to the complex glycan composition, low abundance and lack of glycosidases to remove the O-glycans. Many methods have been applied to analyze the O-glycosylation of membrane glycoproteins and secreted glycoproteins since the synthesis of O-glycosylation occurred in the Golgi apparatus. In recent years, some O-glycosylation has been reported in the nucleus. In this work, we present a proximity labeling strategy based on TurboID by combining core 1 β1-3 galactosyltransferase (C1GalT1), which has been reported in the nucleus, to characterize nucleocytoplasmic O-glycosylation in living HeLa cells. The O-glycosylated protein C1GalT1 was biotinylated by the proximity labeling method in living HeLa cells overexpressing C1GalT1 fused by TurboID and enriched by streptavidin-coated beads. Following digestion with trypsin and mass spectrometry analysis, 68 high-confidence and 298 putative O-glycosylated sites were identified on 366 peptides mapped to 267 proteins. These results indicated that the proximity labeling method is a highly efficient technique to identify O-glycosylation. Furthermore, the finding of abundant O-glycosylation from nucleocytoplasmic proteins indicates a new pathway of O-glycosylation synthesis in cells.
Collapse
Affiliation(s)
- Yunfeng Long
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
| | - Zhunjie Li
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P. R. China
| | - Long Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei, P. R. China
| | - Xin Ao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
| | - Zhengrong Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
| | - Qingjie Chen
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
| | - Dan Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
| | - Xinghui Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei, P. R. China
| | - Ruolan Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei, P. R. China
| | - Banghang Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei, P. R. China
| | - He Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Yanting Su
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, P. R. China
| |
Collapse
|
3
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
4
|
Yin R, Wang X, Li C, Gou Y, Ma X, Liu Y, Peng J, Wang C, Zhang Y. Mass Spectrometry for O-GlcNAcylation. Front Chem 2021; 9:737093. [PMID: 34938717 PMCID: PMC8685217 DOI: 10.3389/fchem.2021.737093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) at proteins with low-abundance expression level and species diversity, shows important roles in plenty of biological processes. O-GlcNAcylations with abnormal expression levels are associated with many diseases. Systematically profiling of O-GlcNAcylation at qualitative or quantitative level is vital for their function understanding. Recently, the combination of affinity enrichment, metabolic labeling or chemical tagging with mass spectrometry (MS) have made significant contributions to structure-function mechanism elucidating of O-GlcNAcylations in organisms. Herein, this review provides a comprehensive update of MS-based methodologies for quali-quantitative characterization of O-GlcNAcylation.
Collapse
Affiliation(s)
- Ruoting Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuhan Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xuecheng Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yongzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Zhu Q, Yi W. Chemistry-Assisted Proteomic Profiling of O-GlcNAcylation. Front Chem 2021; 9:702260. [PMID: 34249870 PMCID: PMC8267408 DOI: 10.3389/fchem.2021.702260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
The modification on proteins with O-linked N-acetyl-β-D-glucosamine (O-GlcNAcylation) is essential for normal cell physiology. Dysregulation of O-GlcNAcylation leads to many human diseases, such as cancer, diabetes and neurodegenerative diseases. Recently, the functional role of O-GlcNAcylation in different physiological states has been elucidated due to the booming detection technologies. Chemical approaches for the enrichment of O-GlcNAcylated proteins combined with mass spectrometry-based proteomics enable the profiling of protein O-GlcNAcylation in a system-wide level. In this review, we summarize recent progresses on the enrichment and proteomic profiling of protein O-GlcNAcylation.
Collapse
Affiliation(s)
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
9
|
You X, Qin H, Ye M. Recent advances in methods for the analysis of protein o-glycosylation at proteome level. J Sep Sci 2017; 41:248-261. [PMID: 28988430 DOI: 10.1002/jssc.201700834] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
O-Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post-translational modifications. Compared with N-linked glycosylation, O-glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O-glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O-glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O-glycosylation, i.e. O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O-glycosylation. For the large-scale analysis of mucin-type glycosylation, the glycan simplification strategies including the ''SimpleCell'' technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation.
Collapse
Affiliation(s)
- Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Nishikaze T, Tsumoto H, Sekiya S, Iwamoto S, Miura Y, Tanaka K. Differentiation of Sialyl Linkage Isomers by One-Pot Sialic Acid Derivatization for Mass Spectrometry-Based Glycan Profiling. Anal Chem 2017; 89:2353-2360. [PMID: 28194959 DOI: 10.1021/acs.analchem.6b04150] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used for high-throughput glycan profiling analysis. In spite of the biological importance of sialic acids on nonreducing ends of glycans, it is still difficult to analyze glycans containing sialic acid residues due to their instability and the presence of linkage isomers. In this Article, we describe a one-pot glycan purification/derivatization method employing a newly developed linkage-specific sialic acid derivatization for MS-based glycan profiling with differentiation of sialyl linkage isomer. The derivatization, termed sialic acid linkage specific alkylamidation (SALSA), consists of sequential two-step alkylamidations. As a result of the reactions, α2,6- and α2,3-linked sialic acids are selectively amidated with different length of alkyl chains, allowing distinction of α2,3-/α2,6-linkage isomers from given mass spectra. Our studies using N-glycan standards with known sialyl linkages proved high suitability of SALSA for reliable relative quantification of α2,3-/α2,6-linked sialic acids compared with existing sialic acid derivatization approaches. SALSA fully stabilizes both α2,3- and α2,6-linked sialic acids by alkylamidation; thereby, it became possible to combine SALSA with existing glycan analysis/preparation methods as follows. The combination of SALSA and chemoselective glycan purification using hydrazide beads allows easy one-pot purification of glycans from complex biological samples, together with linkage-specific sialic acid stabilization. Moreover, SALSA-derivatized glycans can be labeled via reductive amination without causing byproducts such as amide decomposition. This solid-phase SALSA followed by glycan labeling has been successfully applied to human plasma N-glycome profiling.
Collapse
Affiliation(s)
- Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation , 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation , 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation , 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation , 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
11
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Abstract
O-GlcNAcylation is a dynamic protein post-translational modification of serine or threonine residues by an O-linked monosaccharide N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation was discovered three decades ago and its significance has been implicated in several disease states, such as metabolic diseases, cancer and neurological diseases. Yet it remains technically challenging to characterize comprehensively and quantitatively because of its low abundance, low stoichiometry and extremely labile nature under conventional collision-induced dissociation tandem MS conditions. Herein, we review the recent advances addressing these challenges in developing proteomic approaches for site-specific O-GlcNAcylation analysis, including specific enrichment of O-GlcNAc peptides/proteins, unambiguous site-determination of O-GlcNAc modification and quantitative analysis of O-GlcNAcylation.
Collapse
|
13
|
Nowak P, Saggiomo V, Salehian F, Colomb-Delsuc M, Han Y, Otto S. Localized Template-Driven Functionalization of Nanoparticles by Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2015; 54:4192-7. [DOI: 10.1002/anie.201409667] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/21/2015] [Indexed: 12/18/2022]
|
14
|
Nowak P, Saggiomo V, Salehian F, Colomb-Delsuc M, Han Y, Otto S. Localized Template-Driven Functionalization of Nanoparticles by Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Bi C, Jiang R, He X, Chen L, Zhang Y. Synthesis of a hydrophilic maltose functionalized Au NP/PDA/Fe3O4-RGO magnetic nanocomposite for the highly specific enrichment of glycopeptides. RSC Adv 2015. [DOI: 10.1039/c5ra06911d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel approach was developed to synthesize a hydrophilic thiol-terminated maltose-functionalized Au NP/PDA/Fe3O4-RGO nanocomposite which exhibited high selectivity and detection sensitivity in the enrichment of glycopeptides from complex samples.
Collapse
Affiliation(s)
- Changfen Bi
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Ruidong Jiang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Xiwen He
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Langxing Chen
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yukui Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
16
|
Zhang Y, Zhang C, Jiang H, Yang P, Lu H. Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 2015; 44:8260-87. [DOI: 10.1039/c4cs00529e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently available chemical approaches for the enrichment and separation of a PTM proteome using functional solid phases were reviewed.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| | - Cheng Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Hucong Jiang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| |
Collapse
|
17
|
Huang BY, Yang CK, Liu CP, Liu CY. Stationary phases for the enrichment of glycoproteins and glycopeptides. Electrophoresis 2014; 35:2091-107. [PMID: 24729282 DOI: 10.1002/elps.201400034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
The analysis of protein glycosylation is important for biomedical and biopharmaceutical research. Recent advances in LC-MS analysis have enabled the identification of glycosylation sites, the characterisation of glycan structures and the identification and quantification of glycoproteins and glycopeptides. However, this type of analysis remains challenging due to the low abundance of glycopeptides in complex protein digests, the microheterogeneity at glycosylation sites, ion suppression effects and the competition for ionisation by co-eluting peptides. Specific sample preparation is necessary for comprehensive and site-specific glycosylation analyses using MS. Therefore, researchers continue to pursue new columns to broaden their applications. The current manuscript covers recent literature published from 2008 to 2013. The stationary phases containing various chemical bonding methods or ligands immobilisation strategies on solid supports that selectively enrich N-linked or sialylated N-glycopeptides are categorised with either physical or chemical modes of binding. These categories include lectin affinity, hydrophilic interactions, boronate affinity, titanium dioxide affinity, hydrazide chemistry and other separation techniques. This review should aid in better understanding the syntheses and physicochemical properties of each type of stationary phases for enriching glycoproteins and glycopeptides.
Collapse
Affiliation(s)
- Bao-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|