1
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
2
|
Nishiyama K, Hoshikawa K, Maeki M, Ishida A, Tani H, Tokeshi M. A Concentric Ring Electrode for a Wall‐jet Cell in a Microfluidic Device. ELECTROANAL 2019. [DOI: 10.1002/elan.201900109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Keine Nishiyama
- Graduate School of Chemical Sciences and EngineeringHokkaido University, Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Koki Hoshikawa
- Graduate School of Chemical Sciences and EngineeringHokkaido University, Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of EngineeringHokkaido University, Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of EngineeringHokkaido University, Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of EngineeringHokkaido University, Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of EngineeringHokkaido University, Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
- ImPACT Research Center for Advanced NanobiodevicesNagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
3
|
Kimlinger MJ, Martin RS. The Use of a 3D-Printed Microfluidic Device and Pressure Mobilization for Integrating Capillary Electrophoresis with Electrochemical Detection. ELECTROANAL 2018; 30:2241-2249. [PMID: 30930594 DOI: 10.1002/elan.201800367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Capillary electrophoresis coupled with electrochemical detection can be a powerful analysis tool; however, previous methods developed to integrate these two techniques can often times be fragile and have alignment issues such that there are no commercially available approaches. In this paper, we present the use of a 3D-printed Wall-Jet Electrode device for integrating capillary electrophoresis with electrochemical detection. A pressure mobilization step was also utilized to further reduce noise by allowing the electrophoresis separation step to continue only until the first analyte was close to elution. Then, the separation voltage was terminated and pressure-based flow was used for elution of the analyte bands onto the electrode surface with a wall-jet configuration. It is shown that the pressure-based elution is beneficial for the reduction of baseline noise and elimination of field effects. A mixture of catecholamines were separated to demonstrate effectiveness of the system. In addition, the system was coupled with a Beckman Coulter commercial capillary electrophoresis instrument in a straightforward manner. The system was also shown to be effective in separations done with a high ionic strength physiological buffer. This 3D printing approach can be used by researchers to utilize electrochemical detection on commercial capillary electrophoresis systems by downloading the provided STL and/or CAD files.
Collapse
Affiliation(s)
- Melissa J Kimlinger
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103
| |
Collapse
|
4
|
Mehl BT, Martin RS. Enhanced Microchip Electrophoresis Separations Combined with Electrochemical Detection Utilizing a Capillary Embedded in Polystyrene. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:37-45. [PMID: 29707044 PMCID: PMC5915312 DOI: 10.1039/c7ay02505j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.
Collapse
|
5
|
Bailey MR, Martin RS, Schultz ZD. Role of Surface Adsorption in the Surface-Enhanced Raman Scattering and Electrochemical Detection of Neurotransmitters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:20624-20633. [PMID: 27840665 PMCID: PMC5100693 DOI: 10.1021/acs.jpcc.6b01196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The strength of the analyte-substrate interaction is a key component when evaluating the observed enhancements in surface-enhanced Raman scattering (SERS) detection. By performing Raman and electrochemical measurements on a series of neurotransmitters, including dopamine, serotonin, norepinephrine, and epinephrine, as well as catechol as it allows us to examine the diol moiety without the side chains present, we were able to correlate surface chemistry with the measured SERS signal and examine the oxidation mechanism of each analyte. Finite element simulations of fluid flow, mass transport, and Langmuir adsorption to a surface in a microchannel were used to expand on the experiments. By holding kads constant and changing kdes, Keq was varied systematically to elucidate how the adsorption kinetics change for different molecular adsorbates. The modeling indicates that the largest surface concentration is observed from the analyte with the strongest affinity for the surface in both the continuous flow and time dependent injection scenarios. The COMSOL model of varying surface concentration explains differences observed in integrated current during amperometry and signal intensities in SERS measurements. This combination of results indicates that molecular structure and surface affinity influence the sensitivity in SERS, such that the species with the strongest affinity for the surface has the highest signal-to-noise in the SERS experiments in flowing solutions.
Collapse
Affiliation(s)
- Matthew R. Bailey
- University of Notre Dame, Department of Chemistry and Biochemistry, NotreDame, IN 46556
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, St. Louis, MO 63103
| | - Zachary D. Schultz
- University of Notre Dame, Department of Chemistry and Biochemistry, NotreDame, IN 46556
| |
Collapse
|
6
|
Forzano AV, Becirovic V, Martin RS, Edwards JL. Integrated Electrodes and Electrospray Emitter for Polymer Microfluidic Nanospray-MS Interface. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:5152-5157. [PMID: 27818712 PMCID: PMC5091296 DOI: 10.1039/c6ay00197a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interfacing of microfluidic devices to mass spectrometry has challenges including dilution from sheath liquid junctions, fragile electrodes, and excessive dead volumes which prevent optimum performance and common use. The goal of this work is to develop a stable nanospray chip-MS interface that contains easily integrated electrodes and an embedded capillary emitter to mitigate current chip-MS problems. This system uses a hybrid polystyrene-poly(dimethylsiloxane) (PS-PDMS) microfluidic platform with an embedded electrode and integrated capillary emitter used as the nanospray interface. Two chip designs were used to evaluate the performance, illustrate on-chip reaction capabilities. By direct infusion, this system showed good performance with LODs of GSH and caffeine of 9 nM and 1 nM, R2 of 0.996 and 0.992 and sensitivity of 12 counts/nM and 332 counts/nM over a linear dynamic range of 40 nM to 50 μM and 1 to 50 μM respectively. A reaction was performed on the chip with syringe pumps showing the oxidation of glutathione (GSH) to oxidized glutathione (GSSG) using H2O2. The on-chip reaction of GSH oxidation to GSSG, with online-MS detection, successfully demonstrate the stability and robustness of the nanospray interface.
Collapse
Affiliation(s)
- Anna V. Forzano
- Department of Chemistry, Saint Louis University, St Louis, MO, 63130 USA
| | - Vedada Becirovic
- Department of Chemistry, Saint Louis University, St Louis, MO, 63130 USA
| | - R. Scott Martin
- Department of Chemistry, Saint Louis University, St Louis, MO, 63130 USA
- To whom correspondence should be addressed. Phone +1 314 977 3624, ,
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, St Louis, MO, 63130 USA
- To whom correspondence should be addressed. Phone +1 314 977 3624, ,
| |
Collapse
|
7
|
Munshi AS, Martin RS. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device. Analyst 2016; 141:862-9. [PMID: 26649363 PMCID: PMC5011427 DOI: 10.1039/c5an01956g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.
Collapse
Affiliation(s)
- Akash S Munshi
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA.
| | | |
Collapse
|
8
|
Bailey MR, Pentecost AM, Selimovic A, Martin RS, Schultz ZD. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection. Anal Chem 2015; 87:4347-55. [PMID: 25815795 PMCID: PMC4415045 DOI: 10.1021/acs.analchem.5b00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The combination of hydrodynamic focusing with embedded capillaries in a microfluidic device is shown to enable both surface enhanced Raman scattering (SERS) and electrochemical characterization of analytes at nanomolar concentrations in flow. The approach utilizes a versatile polystyrene device that contains an encapsulated microelectrode and fluidic tubing, which is shown to enable straightforward hydrodynamic focusing onto the electrode surface to improve detection. A polydimethyslsiloxane (PDMS) microchannel positioned over both the embedded tubing and SERS active electrode (aligned ∼200 μm from each other) generates a sheath flow that confines the analyte molecules eluting from the embedded tubing over the SERS electrode, increasing the interaction between the Riboflavin (vitamin B2) and the SERS active electrode. The microfluidic device was characterized using finite element simulations, amperometry, and Raman experiments. This device shows a SERS and amperometric detection limit near 1 and 100 nM, respectively. This combination of SERS and amperometry in a single device provides an improved method to identify and quantify electroactive analytes over either technique independently.
Collapse
Affiliation(s)
- Matthew R Bailey
- †University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| | - Amber M Pentecost
- ‡Saint Louis University, Department of Chemistry, St. Louis, Missouri 63103, United States
| | - Asmira Selimovic
- ‡Saint Louis University, Department of Chemistry, St. Louis, Missouri 63103, United States
| | - R Scott Martin
- ‡Saint Louis University, Department of Chemistry, St. Louis, Missouri 63103, United States
| | - Zachary D Schultz
- †University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Pentecost AM, Martin RS. Fabrication and Characterization of All-Polystyrene Microfluidic Devices with Integrated Electrodes and Tubing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:2968-2976. [PMID: 28191042 PMCID: PMC5300304 DOI: 10.1039/c5ay00197h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method of fabricating all-polystyrene devices with integrated electrodes and fluidic tubing is described. As opposed to expensive polystyrene (PS) fabrication techniques that use hot embossing and bonding with a heated lab press, this approach involves solvent-based etching of channels and lamination-based bonding of a PS cover, all of which do not need to occur in a clean room. PS has been studied as an alternative microchip substrate to PDMS, as it is more hydrophilic, biologically compatible in terms of cell adhesion, and less prone to absorption of hydrophobic molecules. The etching/lamination-based method described here results in a variety of all-PS devices, with or without electrodes and tubing. To characterize the devices, micrographs of etched channels (straight and intersected channels) were taken using confocal and scanning electron microscopy. Microchip-based electrophoresis with repetitive injections of fluorescein was conducted using a three-sided PS (etched pinched, twin-tee channel) and one-sided PDMS device. Microchip-based flow injection analysis, with dopamine and NO as analytes, was used to characterize the performance of all-PS devices with embedded tubing and electrodes. Limits of detection for dopamine and NO were 130 nM and 1.8 μM, respectively. Cell immobilization studies were also conducted to assess all-PS devices for cellular analysis. This paper demonstrates that these easy to fabricate devices can be attractive alternative to other PS fabrication methods for a wide variety of analytical and cell culture applications.
Collapse
Affiliation(s)
- Amber M. Pentecost
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
10
|
Johnson AS, Mehl BT, Martin RS. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:884-893. [PMID: 25663849 PMCID: PMC4318258 DOI: 10.1039/c4ay02569e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells.
Collapse
Affiliation(s)
- Alicia S Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Benjamin T Mehl
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
11
|
Selimovic A, Erkal JL, Spence DM, Martin RS. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. Analyst 2014; 139:5686-94. [PMID: 25105251 PMCID: PMC4313528 DOI: 10.1039/c4an01062k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 μm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of analyte cross-over and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 μm and 5 μm pillar array heights were shown to be 50 nM and 105 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r(2) = 0.995, 7.6-190 μM), with an LOD for NO of 230 nM on the glassy carbon/Pt-black/0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible.
Collapse
Affiliation(s)
- Asmira Selimovic
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA.
| | | | | | | |
Collapse
|