1
|
Wang Y, Ji H, Ma J, Luo H, He Y, Tang X, Wu L. Reversible On-Off Photoswitching of DNA Replication Using a Dumbbell Oligodeoxynucleotide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248992. [PMID: 36558127 PMCID: PMC9785685 DOI: 10.3390/molecules27248992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
In most organisms, DNA extension is highly regulated; however, most studies have focused on controlling the initiation of replication, and few have been done to control the regulation of DNA extension. In this study, we adopted a new strategy for azODNs to regulate DNA extension, which is based on azobenzene oligonucleotide chimeras regulated by substrate binding affinity, and the conformation of the chimera can be regulated by a light source with a light wavelength of 365 nm. The results showed that the primer was extended with Taq DNA polymerase after visible light treatment, and DNA extension could be effectively hindered with UV light treatment. We also verify the reversibility of the photoregulation of primer extension through photoswitching of dumbbell asODNs by alternate irradiation with UV and visible light. Our method has the advantages of fast and simple, green response and reversible operations, providing a new strategy for regulating gene replication.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heming Ji
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Institute of Mechanical and Electrical Technician, Yiwu 322000, China
| | - Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (X.T.); (L.W.)
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Institute of Mechanical and Electrical Technician, Yiwu 322000, China
- Correspondence: (X.T.); (L.W.)
| |
Collapse
|
2
|
Huang W, Zhao L, Shen R, Li G, Ling L. RGB color analysis of formaldehyde in vegetables based on DNA functionalized gold nanoparticles and triplex DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3598-3604. [PMID: 36047367 DOI: 10.1039/d2ay00689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A highly sensitive and selective RGB color analysis for the detection of formaldehyde (FA) was developed by using a DNA functionalized gold nanoparticle (AuNPs-DNA) probe. When complementary oligonucleotides (oligo 2 and oligo 3) and a silver ion (Ag+) were added to the AuNPs-DNA solution, triplex DNA was formed, resulting in the aggregation of AuNPs, and accompanied by a solution color change from red to purple. With the addition of formaldehyde, it reacted with Ag+, decreased the stability of triplex DNA between AuNPs-DNA, induced the dispersion of AuNPs, and the color of AuNPs recovered to red. Therefore, the formaldehyde concentration could be estimated with the RGB (red, green, blue) values of the AuNP solution by using a smartphone application (APP). The R value of the system was proportional to the concentration of formaldehyde within the range of 0.23-4.50 mg L-1, with a detection limit of 0.14 mg L-1. The method has been successfully applied to detect the residues of formaldehyde in vegetable samples and has the potential of the on-site determination of formaldehyde.
Collapse
Affiliation(s)
- Wenxiu Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P.R. China.
| | - Lizhen Zhao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P.R. China.
| | - Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P.R. China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P.R. China.
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P.R. China.
| |
Collapse
|
3
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Khose RV, Chakraborty G, Bondarde MP, Wadekar PH, Ray AK, Some S. Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(ii). NEW J CHEM 2021. [DOI: 10.1039/d0nj06259f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have prepared red-fluorescent graphene quantum dots and utilized as a highly selective and sensitive fluorescence turn-off probe for detection of the toxic metal ion Hg2+ from guava leaf extract.
Collapse
Affiliation(s)
- Rahul V. Khose
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Mahesh P. Bondarde
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Pravin H. Wadekar
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Alok K. Ray
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Professor
| | - Surajit Some
- Department of Speciality chemicals Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|
5
|
Zou R, Ma Y, Li C, Zhang F, Chen C, Cai C. A label-free resonance light scattering biosensor for nucleic acids using triple-helix molecular switch and G-quadruplex nanowires. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Li G, Henry SA, Liu H, Kang TS, Nao SC, Zhao Y, Wu C, Jin J, Zhang JT, Leung CH, Wai Hong Chan P, Ma DL. A robust photoluminescence screening assay identifies uracil-DNA glycosylase inhibitors against prostate cancer. Chem Sci 2020; 11:1750-1760. [PMID: 34123270 PMCID: PMC8148385 DOI: 10.1039/c9sc05623h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many cancers have developed resistance to 5-FU, due to removal by the enzyme uracil-DNA glycosylase (UDG), a type of base excision repair enzyme (BER) that can excise uracil and 5-fluorouracil (5-FU) from DNA. However, the development of UDG inhibitor screening methods, especially for the rapid and efficient screening of natural product/natural product-like compounds, is still limited so far. We developed herein a robust time-resolved photoluminescence method for screening UDG inhibitors, which could significantly improve sensitivity over the screening method based on the conventional steady-state spectroscopy, reducing the substantial fluorescence background interference. As a proof-of-concept, two potential UDG inhibitors were identified from a database of natural products and approved drugs. Co-treatment of these two compounds with 5-FU showed synergistic cytotoxicity, providing the basis for treating drug-resistant cancers. Overall, this method provides an avenue for the rapid screening of small molecule regulators of other BER enzyme activities that can avoid false negatives arising from the background fluorescence. The discovery of UDG inhibitors against prostate cancer by using a robust photoluminescence screening assay that can avoid false negatives arising from the background fluorescence.![]()
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | | | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Yichao Zhao
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Jianwen Jin
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Jia-Tong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Philip Wai Hong Chan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK.,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| |
Collapse
|
7
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
8
|
Electrochemical aptasensor based on Au@HS-rGO and thymine-Hg2+-thymine structure for sensitive detection of mercury ion. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yu Y, Duan Q, Zhang X, Li X, Wang K, Liu C, Zhu B. A Highly Selective and Ultrasensitive Fluorescent Probe for Monitoring Hg 2+ and Its Applications in Real Water Samples. ANAL SCI 2019; 35:1251-1254. [PMID: 31353339 DOI: 10.2116/analsci.19p232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mercury ions as high toxic pollutants have received wide-spread attention because of their poisonousness, persistence and enrichment. To better understand the distribution of mercury species and supplement more detailed toxicological research, it is necessary to develop some methods for monitoring mercury ions with high sensitivity and selectivity. Therefore, a simple rhodol-based highly selective fluorescent probe, RH-Hg, has been developed for monitoring Hg2+ with thiocarbamate as the recognition receptor. The probe RH-Hg can quantificationally detect mercury ions in aqueous solution assisted by hydrogen peroxide (H2O2), and it can discriminate Hg2+ through "naked-eye" observation of the color changes from light orange to dark pink. Finally, the practical applications of the probe RH-Hg in the river water further demonstrated that it will be an effective and economical tool for monitoring the distribution of Hg2+ in the environment.
Collapse
Affiliation(s)
- Yamin Yu
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| | - Qingxia Duan
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| | - Xue Zhang
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| | - Xiwei Li
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| | - Kun Wang
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| | - Caiyun Liu
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| | - Baocun Zhu
- School of Water Conservancy and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, University of Jinan
| |
Collapse
|
10
|
Zou D, Jin L, Wu B, Hu L, Chen X, Huang G, Zhang J. Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Qian C, Wang R, Wu H, Ji F, Wu J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta 2019; 1050:1-15. [DOI: 10.1016/j.aca.2018.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
|
12
|
A label-free light-up fluorescent sensing platform based upon hybridization chain reaction amplification and DNA triplex assembly. Talanta 2018; 189:137-142. [DOI: 10.1016/j.talanta.2018.06.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
|
13
|
Zeng P, Hou P, Jing CJ, Huang CZ. Highly sensitive detection of hepatitis C virus DNA by using a one-donor-four-acceptors FRET probe. Talanta 2018; 185:118-122. [DOI: 10.1016/j.talanta.2018.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
|
14
|
Das S, Sarkar A, Rakshit A, Datta A. A Sensitive Water-Soluble Reversible Optical Probe for Hg2+ Detection. Inorg Chem 2018; 57:5273-5281. [DOI: 10.1021/acs.inorgchem.8b00310] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sayani Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Anindita Sarkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ananya Rakshit
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
15
|
Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisi SM. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 2018; 111:1-9. [PMID: 29627731 DOI: 10.1016/j.bios.2018.03.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed.
Collapse
Affiliation(s)
- Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Ponram M, Balijapalli U, Sambath B, Iyer SK, B V, Cingaram R, Natesan Sundaramurthy K. Development of paper-based chemosensor for the detection of mercury ions using mono- and tetra-sulfur bearing phenanthridines. NEW J CHEM 2018. [DOI: 10.1039/c8nj00760h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new sulfur-bearing phenanthridine probes were synthesized and examined for their cation recognition abilities towards different cations in aqueous ACN solution and paper strips.
Collapse
Affiliation(s)
- Marimuthu Ponram
- Department of Chemistry
- SRM Easwari Engineering College
- Chennai 600 089
- India
| | - Umamahesh Balijapalli
- Centre of Organic Photonics and Electronics Research
- Kyushu University
- Fukuoka 819 0395
- Japan
- Department of Chemistry
| | - Baskaran Sambath
- Department of Chemistry
- Tsinghua University
- Beijing 100 084
- People's Republic of China
| | - Sathiyanarayanan Kulathu Iyer
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology (VIT University)
- Vellore 632 014
- India
| | | | | | | |
Collapse
|
17
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
18
|
Li XQ, Liang HQ, Cao Z, Xiao Q, Xiao ZL, Song LB, Chen D, Wang FL. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:26-33. [DOI: 10.1016/j.msec.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
|
19
|
CHEN T, TAN S, LI W, ZHU Y. Amplified Fluorescent Detection of Mercuric Ions by Conjugation of the ThT-induced G-Quadruplex Based Hybridization Chain Reaction. ANAL SCI 2017; 33:1333-1337. [DOI: 10.2116/analsci.33.1333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tianxiao CHEN
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Shuzhen TAN
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Wei LI
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Yuqing ZHU
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| |
Collapse
|
20
|
Su Q, Niu Q, Sun T, Li T. A simple fluorescence turn-on chemosensor based on Schiff-base for Hg2+-selective detection. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Xie H, Wang Q, Chai Y, Yuan Y, Yuan R. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.). Biosens Bioelectron 2016; 86:630-635. [PMID: 27471153 DOI: 10.1016/j.bios.2016.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
In this work, a label-free electrochemical biosensor was developed for sensitive and selective detection of mercury (II) ions (Hg(2+)) based on in-situ deposition of silver nanoparticles (AgNPs) on terminal deoxynucleotidyl transferase (TdT) extended ssDNA for signal output and nicking endonuclease for cycling amplification. In the presence of target Hg(2+), the T-rich DNA (HP1) could partly fold into duplex-like structure (termed as output DNA) via T-Hg(2+)-T base pairs and thus exposed its sticky end. The sticky end of output DNA could then hybridize with 3'-PO4 terminated capture DNA (HP2) on electrode surface to form output DNA-HP2 hybridization complex with the sequence 5'-CCTCAGC-3'/3'-GGAGTCG-5' (the sequence could be recognized by nicking endonuclease Nt. BbvCI). With the introduction of Nt. BbvCI, output DNA existed in hybridization complex was released from electrode and participated in the next hybridization process, accompanying with the cleave of HP2 to expose substantial 3'-OH group, which could be extended into a long ssDNA nanotail with the aid of TdT and deoxyadenosine triphosphate (dATP). Since the long negatively charged ssDNA nanotail absorbed the positively charged silver ions on the DNA skeleton, the metallic silver could be in-situ deposited on electrode surface for electrochemical signal output upon addition of reduction regent sodium borohydride. Under optimal conditions, the developed electrochemical biosensor presented a good response to Hg(2+) with a detection limit of 3 pM (S/N=3). Furthermore, the biosensor exhibited good reproducibility and high selectivity towards other interfering ions. The proposed sensing system also showed a promising potential application in real sample analysis.
Collapse
Affiliation(s)
- Hua Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Qin Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China.
| |
Collapse
|
22
|
Liu X, Li Y, Liang J, Zhu W, Xu J, Su R, Yuan L, Sun C. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid. Talanta 2016; 160:99-105. [PMID: 27591592 DOI: 10.1016/j.talanta.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/26/2016] [Accepted: 07/03/2016] [Indexed: 02/02/2023]
Abstract
In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.
Collapse
Affiliation(s)
- Xin Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jing Liang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wenyue Zhu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingyue Xu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lei Yuan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
23
|
Hu Y, Lin F, Wu T, Wang Y, Zhou XS, Shao Y. Fluorescently Sensing of DNA Triplex Assembly Using an Isoquinoline Alkaloid as Selector, Stabilizer, Inducer, and Switch-On Emitter. Chem Asian J 2016; 11:2041-8. [DOI: 10.1002/asia.201600459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Yuehua Hu
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Fan Lin
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Tao Wu
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Ying Wang
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Xiao-Shun Zhou
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Yong Shao
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| |
Collapse
|
24
|
Li Z, Miao X, Xing K, Peng X, Zhu A, Ling L. Ultrasensitive electrochemical sensor for Hg2+ by using hybridization chain reaction coupled with Ag@Au core–shell nanoparticles. Biosens Bioelectron 2016; 80:339-343. [DOI: 10.1016/j.bios.2016.01.074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 11/28/2022]
|
25
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|
26
|
Wu D, Wang Y, Zhang Y, Ma H, Pang X, Hu L, Du B, Wei Q. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg(2.). Biosens Bioelectron 2016; 82:9-13. [PMID: 27031185 DOI: 10.1016/j.bios.2016.03.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/13/2016] [Accepted: 03/23/2016] [Indexed: 01/17/2023]
Abstract
In this work, a novel electrochemical aptasensor was developed for sensitive and specific detection of Hg(2+) based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure via application of thionine (Th) as indicator signal. For the fabrication of the aptasensor, streptavidin modified magnetic beads (Fe3O4-SA) was firmly immobilized onto the magnetic glassy carbon electrode (MGCE) benefited from its magnetic character. Then biotin labeled T-riched single stranded DNA (Bio-ssDNA) connected with Fe3O4-SA specifically and steadily because of the specific binding capacity between streptavidin and biotin. The stable structure of T-Hg(2+)-T formed in the present of Hg(2+) provided convenience for the intercalation of Th. The detection of Hg(2+) was achieved by recording the differential pulse voltammetry (DPV) signal of Th. Under optimal experimental conditions, the linear range of the fabricated electrochemical aptasensor was 1-200nmol/L, with a detection limit of 0.33nmol/L. Furthermore, the proposed aptasensor may find a potential application for the detection of Hg(2+) in real water sample analysis.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yaoguang Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xuehui Pang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lihua Hu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
27
|
Lv X, Wu W, Niu C, Huang D, Wang X, Zhang X. A facile "turn-on" fluorescent method with high sensitivity for Hg(2+) detection using magnetic Fe3O4 nanoparticles and hybridization chain reactions. Talanta 2016; 151:62-67. [PMID: 26946010 DOI: 10.1016/j.talanta.2016.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/12/2023]
Abstract
In this manuscript, the authors molecularly engineered a hybridization chain reactions (HCRs) based probe on magnetic Fe3O4 nanoparticles for the sensitive detection of Hg(2+). The sensing system comprised three probes: capture probe H1, report probe H2, and report probe H3. The capture probe was modified on the surface of magnetic Fe3O4 nanoparticles. The report probes were labeled with fluorescein isothiocyanate (FITC). Without Hg(2+), the report probes were stable as molecular beacons in solution. In the presence of Hg(2+), the T-rich capture probes and report probes will hybridize into double-helical DNA domains with the aid of T-Hg(2+)-T coordination chemistry. Trigged by this reaction, more molecular beacons open and form a super tandem structure. Herein, the fluorescence signal was magnified by capturing more report probes. Separating the target and captured report probes from reaction solution was benefit to decrease the background signal and interference from other metal ions. The detection limit of this method was about 0.36nM, which is much lower than the regulations of World Health Organization and U.S. Environmental Protection Agency on Hg(2+) in drink water. This proposed sensing strategy also showed favorable selectivity over other common metal ions. In addition, it has good practicability in real water samples.
Collapse
Affiliation(s)
- Xiaoxiao Lv
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Wenchen Wu
- Department of Orthopaedics, Heji Hospital, Changzhi Medical College, Shanxi 046000, China
| | - Chenggang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Dawei Huang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of PRC, Guangzhou 510655, China.
| | - Xiaoyu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xuegang Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
28
|
Wang Y, Hu Y, Wu T, Zhou X, Shao Y. Triggered Excited-State Intramolecular Proton Transfer Fluorescence for Selective Triplex DNA Recognition. Anal Chem 2015; 87:11620-4. [DOI: 10.1021/acs.analchem.5b02851] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ying Wang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Yuehua Hu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Tao Wu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Xiaoshun Zhou
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| |
Collapse
|
29
|
Yang K, Zeng M, Hu X, Guo B, Zhou J. Layered MnO₂ nanosheet as a label-free nanoplatform for rapid detection of mercury(II). Analyst 2015; 139:4445-8. [PMID: 25057513 DOI: 10.1039/c4an00649f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A layered MnO2 nanosheet was established as a label-free fluorescent sensing platform for a rapid, sensitive and low-cost detection of mercury(II) ion in aqueous solution based on the target-induced conformational change of mercury-specific oligonucleotide (MSO) and the interactions between the fluorogenic MSO probe and MnO2 nanosheet.
Collapse
Affiliation(s)
- Ke Yang
- College of Basic Medical Sciences, Changsha Medical University, Changsha 410219, China
| | | | | | | | | |
Collapse
|
30
|
Ding J, Li H, Wang C, Yang J, Xie Y, Peng Q, Li Q, Li Z. "Turn-On" Fluorescent Probe for Mercury(II): High Selectivity and Sensitivity and New Design Approach by the Adjustment of the π-Bridge. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11369-11376. [PMID: 25899603 DOI: 10.1021/acsami.5b01800] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By intelligent design, a new "turn-on" fluorescent probe (1-CN) was obtained based on the deprotection reaction of the dithioacetal promoted by Hg2+ ions, which could sense mercury ions sensitively and selectively, with the detection limit of 8×10(-7) M. Thanks to the apparent turn-on signal, 1-CN has been successfully applied to rapidly detect trace amounts of mercury ions as test strips and cell image.
Collapse
Affiliation(s)
- Jun Ding
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Huiyang Li
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Can Wang
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Jie Yang
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Yujun Xie
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Qian Peng
- ‡Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Qianqian Li
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Zhen Li
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II). Anal Chim Acta 2015; 876:77-82. [DOI: 10.1016/j.aca.2015.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
|
32
|
Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method. Biosens Bioelectron 2015; 65:360-5. [DOI: 10.1016/j.bios.2014.10.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
|
33
|
Xu H, Zhu X, Ye H, Yu L, Chen G, Chi Y, Liu X. A bio-inspired sensor coupled with a bio-bar code and hybridization chain reaction for Hg2+ assay. Chem Commun (Camb) 2015; 51:15031-4. [DOI: 10.1039/c5cc05369b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this article, a bio-inspired DNA sensor is developed, which coupled with bio-bar code and hybridization chain reaction. This bio-inspired sensor has high sensitivity to Hg2+, and has been used to assay Hg2+ in the extraction of traditional Chinese medicine.
Collapse
Affiliation(s)
- Huifeng Xu
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
| | - Xi Zhu
- College of Life Sciences
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Hongzhi Ye
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
| | - Lishuang Yu
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Yuwu Chi
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Xianxiang Liu
- Academy of Integrative Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou
- P. R. China
| |
Collapse
|
34
|
Xu N, Wang Q, Lei J, Liu L, Ju H. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin. Talanta 2014; 132:387-91. [PMID: 25476322 DOI: 10.1016/j.talanta.2014.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 11/25/2022]
Abstract
The design of a label-free aptamer for separation of recognition sequence from signal reporter is significant to ensure the high-efficiency affinity between aptamer and target. This work develops a label-free triple-helix aptamer (THA) as sensing platform for "signal-on" fluorescent detection of thrombin. THA was composed of aptamer sequence and help DNA 1 (H1), which contained the complementary sequence of hexachloro-fluorescein (HEX) labeled help DNA 2 (H2). The specific recognition event between aptamer and thrombin triggered the dismission of THA to release H1. The released H1 then reacted with the signal probe of H2/graphene oxide (GO) nanocomposite to form H1-H2 duplex, leading to the fluorescence recovery of H2 due to the detachment of H1-H2 duplex from the surface of GO. With employment of THA as a signal transducer and GO as a "superquencher", this method shows a sensitive response to thrombin with a wide concentration range from 5 to 1200 nM. The limit of detection is 1.8 nM (S/N=3) with excellent selectivity. Considering the universality of THA, the proposed aptasensor would provide a platform for homogeneous fluorescent detection of a wide range of analytes.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Quanbo Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| | - Lin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
35
|
Deng X, Tang H, Jiang J. Recent progress in graphene-material-based optical sensors. Anal Bioanal Chem 2014; 406:6903-16. [DOI: 10.1007/s00216-014-7895-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|
36
|
Huang J, Gao X, Jia J, Kim JK, Li Z. Graphene Oxide-Based Amplified Fluorescent Biosensor for Hg2+ Detection through Hybridization Chain Reactions. Anal Chem 2014; 86:3209-15. [DOI: 10.1021/ac500192r] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiahao Huang
- Department
of Mechanical
and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiang Gao
- Department
of Mechanical
and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jingjing Jia
- Department
of Mechanical
and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department
of Mechanical
and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhigang Li
- Department
of Mechanical
and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
37
|
Tong D, Duan H, Zhuang H, Cao J, Wei Z, Lin Y. Using T–Hg–T and C–Ag–T: a four-input dual-core molecular logic gate and its new application in cryptography. RSC Adv 2014. [DOI: 10.1039/c3ra44650f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
38
|
Tian M, Liu L, Li Y, Hu R, Liu T, Liu H, Wang S, Li Y. An unusual OFF–ON fluorescence sensor for detecting mercury ions in aqueous media and living cells. Chem Commun (Camb) 2014; 50:2055-7. [DOI: 10.1039/c3cc47915c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
A new peptidyl fluorescent chemosensors for the selective detection of mercury ions based on tetrapeptide. Bioorg Med Chem 2013; 21:7964-70. [DOI: 10.1016/j.bmc.2013.09.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
|