1
|
Bezrodnyi VV, Mikhtaniuk SE, Shavykin OV, Sheveleva NN, Markelov DA, Neelov IM. A Molecular Dynamics Simulation of Complexes of Fullerenes and Lysine-Based Peptide Dendrimers with and without Glycine Spacers. Int J Mol Sci 2024; 25:691. [PMID: 38255765 PMCID: PMC10815860 DOI: 10.3390/ijms25020691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules. The goal of this work is to perform the first molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2, and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes with them. The density and hydrophobicity inside the complex are greater than in dendrimers without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions of complexes less accessible to water and counterions and increases electrostatic and zeta potential compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly dendrimer could be used as nanocontainers for the delivery of fullerenes.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Sofia E. Mikhtaniuk
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Oleg V. Shavykin
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Department of Mathematics, Tver State University, Sadoviy Per., 35, 170102 Tver, Russia
| | - Nadezhda N. Sheveleva
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Denis A. Markelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Igor M. Neelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Institute of Macromolecular Compounds RAS, Bolshoi Prospect 31, 199004 St. Petersburg, Russia
| |
Collapse
|
2
|
Hirao T, Haino T. Supramolecular Ensembles Formed via Calix[5]arene-Fullerene Host-Guest Interactions. Chem Asian J 2022; 17:e202200344. [PMID: 35647739 DOI: 10.1002/asia.202200344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
This minireview introduces the research directions for the synthesis of supramolecular fullerene polymers. First, the discovery of host-guest complexes of pristine fullerenes is briefed. We focus on progress in supramolecular fullerene polymers directed by the use of calix[5]arene-fullerene interactions, which comprise linear, networked, helical arrays of fullerenes in supramolecular ensembles. The unique self-sorting behavior of right-handed and left-handed helical supramolecular fullerene arrays is discussed. Thereafter, an extensive investigation of the calix[5]arene-fullerene interaction for control over the chain structures of covalent polymers is introduced.
Collapse
Affiliation(s)
- Takehiro Hirao
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Department of Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| |
Collapse
|
3
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
4
|
Mamardashvili G, Mamardashvili N, Koifman O. Macrocyclic Receptors for Identification and Selective Binding of Substrates of Different Nature. Molecules 2021; 26:5292. [PMID: 34500725 PMCID: PMC8433985 DOI: 10.3390/molecules26175292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Molecular recognition of host/guest molecules represents the basis of many biological processes and phenomena. Enzymatic catalysis and inhibition, immunological response, reproduction of genetic information, biological regulatory functions, the effects of drugs, and ion transfer-all these processes include the stage of structure recognition during complexation. The goal of this review is to solicit and publish the latest advances in the design and sensing and binding abilities of porphyrin-based heterotopic receptors with well-defined geometries, the recognition ability of which is realized due to ionic, H-bridge, charge transfer, hydrophobic, and hydrophilic interactions. The dissection of the considered low-energy processes at the molecular scale expands our capabilities in the development of effective systems for controlled recognition, selective delivery, and prolonged release of substrates of different natures (including drugs) to their sites of functioning.
Collapse
Affiliation(s)
| | - Nugzar Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskayast. 1, 153045 Ivanovo, Russia; (G.M.); (O.K.)
| | | |
Collapse
|
5
|
Albrecht K, Minagawa K, Nakajima S, Kushida S, Yamamoto Y, Kuzume A, Yamamoto K. Nanosphere Formation of π-Conjugated Dendrimers by Simple Precipitation Method. CHEM LETT 2019. [DOI: 10.1246/cl.190511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ken Albrecht
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Ken Minagawa
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Sae Nakajima
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Soh Kushida
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yohei Yamamoto
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Tsukuba Research Centre for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Kuzume
- JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
6
|
Albrecht K, Sakane N, Inomata Y, Yamamoto K. Effect of the Core Structure on the Sequential Coordination of Phenylazomethine Dendrimer. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Nguyen NT, Hofkens J, Scheblykin IG, Kruk M, Dehaen W. Click Reaction Synthesis and Photophysical Studies of Dendritic Metalloporphyrins. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Macromolecular semi-rigid nanocavities for cooperative recognition of specific large molecular shapes. Nat Commun 2013; 4:2581. [DOI: 10.1038/ncomms3581] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/10/2013] [Indexed: 11/08/2022] Open
|