1
|
Laigre E, Bonnet H, Beauvineau C, Lavergne T, Verga D, Defrancq E, Dejeu J, Teulade-Fichou MP. Systematic Evaluation of Benchmark G4 Probes and G4 Clinical Drugs using three Biophysical Methods: A Guideline to Evaluate Rapidly G4-Binding Affinity. Chembiochem 2024; 25:e202400210. [PMID: 38619969 DOI: 10.1002/cbic.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
G-quadruplex DNA structures (G4) are proven to interfere with most genetic and epigenetic processes. Small molecules binding these structures (G4 ligands) are invaluable tools to probe G4-biology and address G4-druggability in various diseases (cancer, viral infections). However, the large number of reported G4 ligands (>1000) could lead to confusion while selecting one for a given application. Herein we conducted a systematic affinity ranking of 11 popular G4 ligands vs 5 classical G4 sequences using FRET-melting, G4-FID assays and SPR. Interestingly SPR data globally align with the rankings obtained from the two semi-quantitative assays despite discrepancies due to limits and characteristics of each assay. In the whole, PhenDC3 emerges as the most potent binder irrespective of the G4 sequence. Immediately below PDS, PDC-360A, BRACO19, TMPyP4 and RHPS4 feature strong to medium binding again with poor G4 topology discrimination. More strikingly, the G4 drugs Quarfloxin, CX5461 and c-PDS exhibit weak affinity with all G4s studied. Finally, NMM and Cu-ttpy showed heterogeneous behaviors due, in part, to their physicochemical particularities poorly compatible with screening conditions. The remarkable properties of PhenDC3 led us to propose its use for benchmarking FRET-melting and G4-FID assays for rapid G4-affinity evaluation of newly developed ligands.
Collapse
Affiliation(s)
- E Laigre
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - H Bonnet
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - C Beauvineau
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - T Lavergne
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - D Verga
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - E Defrancq
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - J Dejeu
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
- SUPMICROTECH, Université Franche-Comté, CNRS, Institut FEMTO-ST, 25000, Besançon, France
| | - M-P Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| |
Collapse
|
2
|
Ogbonna EN, Paul A, Ross Terrell J, Fang Z, Chen C, Poon GMK, Boykin DW, Wilson WD. Drug design and DNA structural research inspired by the Neidle laboratory: DNA minor groove binding and transcription factor inhibition by thiophene diamidines. Bioorg Med Chem 2022; 68:116861. [PMID: 35661929 PMCID: PMC9707304 DOI: 10.1016/j.bmc.2022.116861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
The understanding of sequence-specific DNA minor groove interactions has recently made major steps forward and as a result, the goal of development of compounds that target the minor groove is an active research area. In an effort to develop biologically active minor groove agents, we are preparing and exploring the DNA interactions of diverse diamidine derivatives with a 5'-GAATTC-3' binding site using a powerful array of methods including, biosensor-SPR methods, and X-ray crystallography. The benzimidazole-thiophene module provides an excellent minor groove recognition component. A central thiophene in a benzimidazole-thiophene-phenyl aromatic system provides essentially optimum curvature for matching the shape of the minor groove. Comparison of that structure to one with the benzimidazole replaced with an indole shows that the two structures are very similar, but have some interesting and important differences in electrostatic potential maps, the DNA minor groove binding structure based on x-ray crystallographic analysis, and inhibition of the major groove binding PU.1 transcription factor complex. The binding KD for both compounds is under 10 nM and both form amidine H-bonds to DNA bases. They both have bifurcated H-bonds from the benzimidazole or indole groups to bases at the center of the -AATT- binding site. Analysis of the comparative results provides an excellent understanding of how thiophene compounds recognize the minor groove and can act as transcription factor inhibitors.
Collapse
Affiliation(s)
- Edwin N Ogbonna
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - J Ross Terrell
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ziyuan Fang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Cen Chen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| |
Collapse
|
3
|
Bisoi A, Sarkar S, Chandra Singh P. Contrasting Effect of Salts on the Binding of Antimalarial Drug Hydroxychloroquine with Different Sequences of Duplex DNA. J Phys Chem B 2022; 126:5605-5612. [PMID: 35867068 DOI: 10.1021/acs.jpcb.2c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxychloroquine (HCQ) is an important antimalarial drug which functions plausibly by targeting the DNA of parasites. Salts play a crucial role in the functionality of various biological processes. Hence, the effect of salts (NaCl and MgCl2) on the binding of HCQ with AT- and CG-DNAs as well as the binding-induced stability of both sequences of DNAs have been investigated using the spectroscopic and molecular dynamics (MD) simulation methods. It has been found that the effect of salts on the binding of HCQ is highly sensitive to the nature of ions as well as DNA sequences. The effect of ions is opposite for the binding of AT- and CG-DNAs as the presence of Mg2+ ions enhances the binding of HCQ with AT-DNA, whereas the binding of HCQ with CG-DNA gets decreased on the addition of both ions. Similarly, the presence of Mg2+ enhances the stabilization of HCQ-bound AT-DNA, whereas the effect is opposite for the CG-DNA in the presence of both the ions. The MD simulation study suggests that the hydration states of both ions are different and they interact differently in the minor and major grooves of both the sequences of DNA which may be one of the reasons for the different binding of HCQ with these two sequences of DNA in the presence of salts. The information about the effect of salts on the binding of HCQ with DNAs in a sequence-specific manner may be useful in understanding the mechanism of the action and toxicity effect of HCQ against malaria.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Paul A, Farahat AA, Boykin DW, Wilson WD. Thermodynamic Factors That Drive Sequence-Specific DNA Binding of Designed, Synthetic Minor Groove Binding Agents. Life (Basel) 2022; 12:life12050681. [PMID: 35629349 PMCID: PMC9147024 DOI: 10.3390/life12050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Ken Breslauer began studies on the thermodynamics of small cationic molecules binding in the DNA minor groove over 30 years ago, and the studies reported here are an extension of those ground-breaking reports. The goals of this report are to develop a detailed understanding of the binding thermodynamics of pyridine-based sequence-specific minor groove binders that have different terminal cationic groups. We apply biosensor-surface plasmon resonance and ITC methods to extend the understanding of minor groove binders in two directions: (i) by using designed, heterocyclic dicationic minor groove binders that can incorporate a G•C base pair (bp), with flanking AT base pairs, into their DNA recognition site, and bind to DNA sequences specifically; and (ii) by using a range of flanking AT sequences to better define molecular recognition of the minor groove. A G•C bp in the DNA recognition site causes a generally more negative binding enthalpy than with most previously used pure AT binding sites. The binding is enthalpy-driven at 25 °C and above. The flanking AT sequences also have a large effect on the binding energetics with the -AAAGTTT- site having the strongest affinity. As a result of these studies, we now have a much better understanding of the effects of the DNA sequence and compound structure on the molecular recognition and thermodynamics of minor groove complexes.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
| | - Abdelbasset A. Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
| | - W. David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
- Correspondence: ; Tel.: +1-404-413-5503; Fax: +1-404-413-5505
| |
Collapse
|
5
|
Size matters: DNA binding site kinetics as a function of polyamide size. Biochimie 2022; 199:123-129. [DOI: 10.1016/j.biochi.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022]
|
6
|
Murade CU, Shubeita GT. A fluorescent reporter on electrostatic DNA-ligand interactions. BIOMEDICAL OPTICS EXPRESS 2022; 13:159-167. [PMID: 35154861 PMCID: PMC8803044 DOI: 10.1364/boe.439791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Among the various types of interactions between biomolecules, electrostatic interactions dominate as these are long-range interactions and are often a generic first step in the recruitment of specific ligands. DNA, being a highly charged molecule, attracts a plethora of molecules. Interactions between DNA and proteins or small molecules shape the overall function of the cell. Various processes such as DNA replication, DNA repair, synthesis of mRNA, and packaging of DNA are mediated by interactions between protein molecules and DNA that are predominantly electrostatic. Here, we present a fluorescence resonance energy transfer (FRET)-based probe which can report on the electrostatic interactions between the negatively-charged DNA and positively-charged metal ions, oligopeptides, as well as DNA groove-binding drug molecules. The simplicity, sensitivity, and versatility of the DNA-based probe makes it suited for applications where specific protein-DNA interactions can be probed, and DNA-binding drugs can be discovered in high-throughput screens of compound libraries. This is particularly relevant given that some of the most potent antitumor and antimicrobial drugs associate with DNA electrostatically.
Collapse
|
7
|
Guo P, Farahat AA, Paul A, Boykin DW, Wilson WD. Engineered modular heterocyclic-diamidines for sequence-specific recognition of mixed AT/GC base pairs at the DNA minor groove. Chem Sci 2021; 12:15849-15861. [PMID: 35024109 PMCID: PMC8672716 DOI: 10.1039/d1sc04720e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
This report describes a breakthrough in a project to design minor groove binders to recognize any sequence of DNA. A key goal is to invent synthetic chemistry for compound preparation to recognize an adjacent GG sequence that has been difficult to target. After trying several unsuccessful compound designs, an N-alkyl-benzodiimidazole structure was selected to provide two H-bond acceptors for the adjacent GG-NH groups. Flanking thiophenes provide a preorganized structure with strong affinity, DB2831, and the structure is terminated by phenyl-amidines. The binding experimental results for DB2831 with a target AAAGGTTT sequence were successful and include a high ΔT m, biosensor SPR with a K D of 4 nM, a similar K D from fluorescence titrations and supporting competition mass spectrometry. MD analysis of DB2831 bound to an AAAGGTTT site reveals that the two unprotonated N of the benzodiimidazole group form strong H-bonds (based on distance) with the two central G-NH while the central -CH of the benzodiimidazole is close to the -C[double bond, length as m-dash]O of a C base. These three interactions account for the strong preference of DB2831 for a -GG- sequence. Surprisingly, a complex with one dynamic, interfacial water is favored with 75% occupancy.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University 50 Decatur St SE Atlanta GA 30303 USA +1 404-413-5503
| | - Abdelbasset A Farahat
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University 50 Decatur St SE Atlanta GA 30303 USA +1 404-413-5503
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Ananya Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University 50 Decatur St SE Atlanta GA 30303 USA +1 404-413-5503
| | - David W Boykin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University 50 Decatur St SE Atlanta GA 30303 USA +1 404-413-5503
| | - W David Wilson
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University 50 Decatur St SE Atlanta GA 30303 USA +1 404-413-5503
| |
Collapse
|
8
|
Impact of Self-Association on the Architectural Properties of Bacterial Nucleoid Proteins. Biophys J 2020; 120:370-378. [PMID: 33340542 DOI: 10.1016/j.bpj.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The chromosomal DNA of bacteria is folded into a compact body called the nucleoid, which is composed essentially of DNA (∼80%), RNA (∼10%), and a number of different proteins (∼10%). These nucleoid proteins act as regulators of gene expression and influence the organization of the nucleoid by bridging, bending, or wrapping the DNA. These so-called architectural properties of nucleoid proteins are still poorly understood. For example, the reason why certain proteins compact the DNA coil in certain environments but make the DNA more rigid instead in other environments is the subject of ongoing debates. Here, we address the question of the impact of the self-association of nucleoid proteins on their architectural properties and try to determine whether differences in self-association are sufficient to induce large changes in the organization of the DNA coil. More specifically, we developed two coarse-grained models of proteins, which interact identically with the DNA but self-associate differently by forming either clusters or filaments in the absence of the DNA. We showed through Brownian dynamics simulations that self-association of the proteins dramatically increases their ability to shape the DNA coil. Moreover, we observed that cluster-forming proteins significantly compact the DNA coil (similar to the DNA-bridging mode of H-NS proteins), whereas filament-forming proteins significantly increase the stiffness of the DNA chain instead (similar to the DNA-stiffening mode of H-NS proteins). This work consequently suggests that the knowledge of the DNA-binding properties of the proteins is in itself not sufficient to understand their architectural properties. Rather, their self-association properties must also be investigated in detail because they might actually drive the formation of different DNA-protein complexes.
Collapse
|
9
|
Ha VLT, Erlitzki N, Farahat AA, Kumar A, Boykin DW, Poon GMK. Dissecting Dynamic and Hydration Contributions to Sequence-Dependent DNA Minor Groove Recognition. Biophys J 2020; 119:1402-1415. [PMID: 32898478 DOI: 10.1016/j.bpj.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022] Open
Abstract
Sequence selectivity is a critical attribute of DNA-binding ligands and underlines the need for detailed molecular descriptions of binding in representative sequence contexts. We investigated the binding and volumetric properties of DB1976, a model bis(benzimidazole)-selenophene diamidine compound with emerging therapeutic potential in acute myeloid leukemia, debilitating fibroses, and obesity-related liver dysfunction. To sample the scope of cognate DB1976 target sites, we evaluated three dodecameric duplexes spanning >103-fold in binding affinity. The attendant changes in partial molar volumes varied substantially, but not in step with binding affinity, suggesting distinct modes of interactions in these complexes. Specifically, whereas optimal binding was associated with loss of hydration water, low-affinity binding released more hydration water. Explicit-atom molecular dynamics simulations showed that minor groove binding perturbed the conformational dynamics and hydration at the termini and interior of the DNA in a sequence-dependent manner. The impact of these distinct local dynamics on hydration was experimentally validated by domain-specific interrogation of hydration with salt, which probed the charged axial surfaces of oligomeric DNA preferentially over the uncharged termini. Minor groove recognition by DB1976, therefore, generates dynamically distinct domains that can make favorable contributions to hydration release in both high- and low-affinity binding. Because ligand binding at internal sites of DNA oligomers modulates dynamics at the termini, the results suggest both short- and long-range dynamic effects along the DNA target that can influence their effectiveness as low-MW competitors of protein binding.
Collapse
Affiliation(s)
- Van L T Ha
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Noa Erlitzki
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, Georgia; Department of Pharmaceutical and Medicinal Chemistry, California Northstate University, Elk Grove, California
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, Georgia; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
10
|
Song Y, Niederschulte J, Bales KN, Park AH, Bashkin JK, Dupureur CM. DNA binding thermodynamics and site stoichiometry as a function of polyamide size. Biochimie 2019; 165:170-178. [DOI: 10.1016/j.biochi.2019.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
|
11
|
Song Y, Niederschulte J, Bales KN, Bashkin JK, Dupureur CM. Thermodynamics and site stoichiometry of DNA binding by a large antiviral hairpin polyamide. Biochimie 2019; 157:149-157. [PMID: 30481539 DOI: 10.1016/j.biochi.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
PA1 (dIm-PyPyβPyPyPy-γ-PyPyβPyPyPyPyβ-Ta) is a large (14-ring) hairpin polyamide that was designed to recognize the DNA sequence 5'-W2GW7-3', where W is either A or T. As is common among the smaller 6-8-ring hairpin polyamides (PAs), it binds its target recognition sequence with low nM affinity. However, in addition to its large size, it is distinct from these more extensively characterized PAs in its high tolerance for mismatches and antiviral properties. In ongoing attempts to understand the basis for these distinctions, we conducted thermodynamics studies of PA1-DNA interactions. The temperature dependence of binding affinity was measured using TAMRA-labeled hairpin DNAs containing a single target sequence. PA1 binding to either an ATAT/TATA or an AAAA/TTTT pattern is consistently entropically driven. This is in contrast to the A/T pattern-dependent driving forces for DNA binding by netropsin, distamycin, and smaller hairpin polyamides. Analysis of the salt dependence of PA1-DNA binding reveals that within experimental error, there is no dependence on ionic strength, indicating that the polyelectrolyte effect does not contribute to PA1-DNA binding energetics. This is similar to that observed for smaller PAs. PA1-DNA recognition sequence binding stoichiometries were determined at both nM (fluorescence) and μM (circular dichroism) concentrations. With all sequences and under both conditions, multiple PA1 molecules bind the small DNA hairpin that contains only a single recognition sequence. Implications for these observations are discussed.
Collapse
Affiliation(s)
- Yang Song
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Jacquelyn Niederschulte
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Kristin N Bales
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - James K Bashkin
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Cynthia M Dupureur
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA.
| |
Collapse
|
12
|
Joyeux M. Role of Salt Valency in the Switch of H-NS Proteins between DNA-Bridging and DNA-Stiffening Modes. Biophys J 2018; 114:2317-2325. [PMID: 29576193 DOI: 10.1016/j.bpj.2018.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/05/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022] Open
Abstract
This work investigates the interactions of H-NS proteins and bacterial genomic DNA through computer simulations performed with a coarse-grained model. The model was developed specifically to study the switch of H-NS proteins from the DNA-stiffening to the DNA-bridging mode, which has been observed repeatedly upon addition of multivalent cations to the buffer but is still not understood. Unraveling the corresponding mechanism is all the more crucial, as the regulation properties of H-NS proteins, as well as other nucleoid proteins, are linked to their DNA-binding properties. The simulations reported here support a mechanism, according to which the primary role of multivalent cations consists in decreasing the strength of H-NS/DNA interactions compared to H-NS/H-NS interactions, with the latter ones becoming energetically favored with respect to the former ones above a certain threshold of the effective valency of the cations of the buffer. Below the threshold, H-NS dimers form filaments, which stretch along the DNA molecule but are quite inefficient in bridging genomically distant DNA sites (DNA-stiffening mode). In contrast, just above the threshold, H-NS dimers form three-dimensional clusters, which are able to connect DNA sites that are distant from the genomic point of view (DNA-bridging mode). The model provides clear rationales for the experimental observations that the switch between the two modes is a threshold effect and that the ability of H-NS dimers to form higher order oligomers is crucial for their bridging capabilities.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
13
|
Ranjan N, Kellish P, King A, Arya DP. Impact of Linker Length and Composition on Fragment Binding and Cell Permeation: Story of a Bisbenzimidazole Dye Fragment. Biochemistry 2017; 56:6434-6447. [PMID: 29131946 DOI: 10.1021/acs.biochem.7b00929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small molecules that modulate biological functions are targets of modern day drug discovery efforts. In a common platform fragment-based drug discovery, two fragments that bind to adjacent sites on a target are identified and are then linked together using different linkers to identify the linkage for optimum activity. What are not known from these studies are the effects these linkers, which typically contain C, H, and O atoms, have on the properties of the individual fragment. Herein, we investigate such effects in a bisbenzimidazole fragment whose derivatives have a wide range of therapeutic applications in nucleic acid recognition, sensing, and photodynamic therapy and as cellular probes. We report a dramatic effect of linker length and composition of alkynyl (clickable) Hoechst 33258 derivatives in target binding and cell uptake. We show that the binding of Hoechst 33258-modeled bisbenzimidazoles (1-9) that contain linkers of varying lengths (3-21 atoms) display length- and composition-dependent variation in B-DNA stabilization using a variety of spectroscopic methods. For a dodecamer DNA duplex, the thermal stabilization varied from 0.3 to 9.0 °C as the linker length increased from 3 to 21 atoms, respectively. Compounds with linker lengths of ≤11 atoms (such as compounds 1 and 5) are localized in the nucleus, while compounds with long linkers (such as compounds 8 and 9) are distributed in the extranuclear space, as well, with possible interactions with extranuclear targets. These findings provide insights into future drug design by revealing how linkers can influence the biophysical and cellular properties of individual drug fragments.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Patrick Kellish
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States.,NUBAD LLC , 900 B West Faris Road, Greenville, South Carolina 29605, United States
| |
Collapse
|
14
|
Funke A, Weisz K. Comprehensive Thermodynamic Profiling for the Binding of a G-Quadruplex Selective Indoloquinoline. J Phys Chem B 2017; 121:5735-5743. [DOI: 10.1021/acs.jpcb.7b02686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
15
|
Allred BE, Gebala M, Herschlag D. Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH +·C Wobble Formation in Double-Stranded DNA. J Am Chem Soc 2017; 139:7540-7548. [PMID: 28489947 PMCID: PMC5466006 DOI: 10.1021/jacs.7b01830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The high charge density of nucleic
acids and resulting ion atmosphere
profoundly influence the conformational landscape of RNA and DNA and
their association with small molecules and proteins. Electrostatic
theories have been applied to quantitatively model the electrostatic
potential surrounding nucleic acids and the effects of the surrounding
ion atmosphere, but experimental measures of the potential and tests
of these models have often been complicated by conformational changes
and multisite binding equilibria, among other factors. We sought a
simple system to further test the basic predictions from electrostatics
theory and to measure the energetic consequences of the nucleic acid
electrostatic field. We turned to a DNA system developed by Bevilacqua
and co-workers that involves a proton as a ligand whose binding is
accompanied by formation of an internal AH+·C wobble
pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions
from polyelectrolyte models, we observed logarithmic dependences of
proton affinity versus salt concentration of −0.96 ± 0.03
and −0.52 ± 0.01 with monovalent and divalent cations,
respectively, and these results help clarify prior results that appeared
to conflict with these fundamental models. Strikingly, quantitation
of the ion atmosphere content indicates that divalent cations are
preferentially lost over monovalent cations upon A·C protonation,
providing experimental indication of the preferential localization
of more highly charged cations to the inner shell of the ion atmosphere.
The internal AH+·C wobble system further allowed us
to parse energetic contributions and extract estimates for the electrostatic
potential at the position of protonation. The results give a potential
near the DNA surface at 20 mM Mg2+ that is much less substantial
than at 20 mM K+ (−120 mV vs −210 mV). These
values and difference are similar to predictions from theory, and
the potential is substantially reduced at higher salt, also as predicted;
however, even at 1 M K+ the potential remains substantial,
counter to common assumptions. The A·C protonation module allows
extraction of new properties of the ion atmosphere and provides an
electrostatic meter that will allow local electrostatic potential
and energetics to be measured within nucleic acids and their complexes
with proteins.
Collapse
Affiliation(s)
- Benjamin E Allred
- Department of Biochemistry, Stanford University , Stanford, California 94305, United States
| | - Magdalena Gebala
- Department of Biochemistry, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University , Stanford, California 94305, United States.,Department of Chemistry, Stanford University , Stanford, California 94305, United States.,ChEM-H Institute, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
16
|
Erlitzki N, Huang K, Xhani S, Farahat AA, Kumar A, Boykin DW, Poon GMK. Investigation of the electrostatic and hydration properties of DNA minor groove-binding by a heterocyclic diamidine by osmotic pressure. Biophys Chem 2017; 231:95-104. [PMID: 28363467 DOI: 10.1016/j.bpc.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/29/2022]
Abstract
Previous investigations of sequence-specific DNA binding by model minor groove-binding compounds showed that the ligand/DNA complex was destabilized in the presence of compatible co-solutes. Inhibition was interpreted in terms of osmotic stress theory as the uptake of significant numbers of excess water molecules from bulk solvent upon complex formation. Here, we interrogated the AT-specific DNA complex formed with the symmetric heterocyclic diamidine DB1976 as a model for minor groove DNA recognition using both ionic (NaCl) and non-ionic cosolutes (ethylene glycol, glycine betaine, maltose, nicotinamide, urea). While the non-ionic cosolutes all destabilized the ligand/DNA complex, their quantitative effects were heterogeneous in a cosolute- and salt-dependent manner. Perturbation with NaCl in the absence of non-ionic cosolute showed that preferential hydration water was released upon formation of the DB1976/DNA complex. As salt probes counter-ion release from charged groups such as the DNA backbone, we propose that the preferential hydration uptake in DB1976/DNA binding observed in the presence of osmolytes reflects the exchange of preferentially bound cosolute with hydration water in the environs of the bound DNA, rather than a net uptake of hydration waters by the complex.
Collapse
Affiliation(s)
- Noa Erlitzki
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Kenneth Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
17
|
Wang S, Aston K, Koeller KJ, Harris GD, Rath NP, Bashkin JK, Wilson WD. Modulation of DNA-polyamide interaction by β-alanine substitutions: a study of positional effects on binding affinity, kinetics and thermodynamics. Org Biomol Chem 2015; 12:7523-36. [PMID: 25141096 DOI: 10.1039/c4ob01456a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects that β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on the binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino)propylamine] in parent PA has been modified into a dicationic Ta group (3,3'-diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Paul A, Chai Y, Boykin DW, Wilson WD. Understanding mixed sequence DNA recognition by novel designed compounds: the kinetic and thermodynamic behavior of azabenzimidazole diamidines. Biochemistry 2014; 54:577-87. [PMID: 25495885 PMCID: PMC4303320 DOI: 10.1021/bi500989r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sequence-specific recognition of DNA by small organic molecules offers a potentially effective approach for the external regulation of gene expression and is an important goal in cell biochemistry. Rational design of compounds from established modules can potentially yield compounds that bind strongly and selectively with specific DNA sequences. An initial approach is to start with common A·T bp recognition molecules and build in G·C recognition units. Here we report on the DNA interaction of a synthetic compound that specifically binds to a G·C bp in the minor groove of DNA by using an azabenzimidazole moiety. The detailed interactions were evaluated with biosensor-surface plasmon resonance (SPR), isothermal calorimetric (ITC), and mass spectrometry (ESI-MS) methods. The compound, DB2277, binds with single G·C bp containing sequences with sub-nanomolar potency and displays slow dissociation kinetics and high selectivity. A detailed thermodynamic and kinetic study at different experimental salt concentrations and temperatures shows that the binding free energy is salt concentration dependent but essentially temperature independent under our experimental conditions, and binding enthalpy is temperature dependent but salt concentration independent. The results show that in the proper compound structural context novel heterocyclic cations can be designed to strongly recognize complex DNA sequences.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303-3083, United States
| | | | | | | |
Collapse
|
19
|
Munde M, Kumar A, Peixoto P, Depauw S, Ismail MA, Farahat AA, Paul A, Say MV, David-Cordonnier MH, Boykin DW, Wilson WD. The unusual monomer recognition of guanine-containing mixed sequence DNA by a dithiophene heterocyclic diamidine. Biochemistry 2014; 53:1218-27. [PMID: 24495039 PMCID: PMC3985535 DOI: 10.1021/bi401582t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
DB1255 is a symmetrical diamidinophenyl-dithiophene
that exhibits
cellular activity by binding to DNA and inhibiting binding of ERG,
an ETS family transcription factor that is commonly overexpressed
or translocated in leukemia and prostate cancer [Nhili, R., Peixoto,
P., Depauw, S., Flajollet, S., Dezitter, X., Munde, M. M., Ismail,
M. A., Kumar, A., Farahat, A. A., Stephens, C. E., Duterque-Coquillaud,
M., Wilson, W. D., Boykin, D. W., and David-Cordonnier, M. H. (2013) Nucleic Acids Res. 41, 125–138]. Because transcription
factor inhibition is complex but is an attractive area for anticancer
and antiparasitic drug development, we have evaluated the DNA interactions
of additional derivatives of DB1255 to gain an improved understanding
of the biophysical chemistry of complex function and inhibition. DNase
I footprinting, biosensor surface plasmon resonance, and circular
dichroism experiments show that DB1255 has an unusual and strong monomer
binding mode in minor groove sites that contain a single GC base pair
flanked by AT base pairs, for example, 5′-ATGAT-3′.
Closely related derivatives, such as compounds with the thiophene
replaced with furan or selenophane, bind very weakly to GC-containing
sequences and do not have biological activity. DB1255 is selective
for the ATGAT site; however, a similar sequence, 5′-ATGAC-3′,
binds DB1255 more weakly and does not produce a footprint. Molecular
docking studies show that the two thiophene sulfur atoms form strong,
bifurcated hydrogen bond-type interactions with the G-N-H sequence
that extends into the minor groove while the amidines form hydrogen
bonds to the flanking AT base pairs. The central dithiophene unit
of DB1255 thus forms an excellent, but unexpected, single-GC base
pair recognition module in a monomer minor groove complex.
Collapse
Affiliation(s)
- Manoj Munde
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303-3083, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koeller KJ, Harris GD, Aston K, He G, Castaneda CH, Thornton MA, Edwards TG, Wang S, Nanjunda R, Wilson WD, Fisher C, Bashkin JK. DNA Binding Polyamides and the Importance of DNA Recognition in their use as Gene-Specific and Antiviral Agents. Med Chem 2014; 4:338-344. [PMID: 24839583 DOI: 10.4172/2161-0444.1000162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. Louis, and Georgia State University. We describe dramatic consequences of β-alanine positioning even in relatively small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB as a Keynote Lecture in the 2nd International Conference on Medicinal Chemistry and Computer Aided Drug Design Conference in Las Vegas, NV, October 2013.
Collapse
Affiliation(s)
- Kevin J Koeller
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - G Davis Harris
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Karl Aston
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Gaofei He
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Carlos H Castaneda
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Melissa A Thornton
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | | | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | - James K Bashkin
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA ; NanoVir, LLC, Kalamazoo, MI 49008, USA
| |
Collapse
|