1
|
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:12515. [PMID: 39684227 DOI: 10.3390/ijms252312515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients' PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments.
Collapse
Affiliation(s)
- Adelina Yordanova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Mariana Ivanova
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Alexander Angelov
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | | | | | - Ekaterina Kurteva
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| |
Collapse
|
2
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
3
|
Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C, Hongjun G. Strategy for Clinical Setting of Co-transplantation of Mesenchymal Stem Cells and Pancreatic Islets. Cell Transplant 2024; 33:9636897241259433. [PMID: 38877672 PMCID: PMC11179456 DOI: 10.1177/09636897241259433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.
Collapse
Affiliation(s)
- Liang Mei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Yuwei
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liang Weiping
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Zhiran
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Bingzheng
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chen Jibing
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| | - Gao Hongjun
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| |
Collapse
|
4
|
Fogg KC, Miller AE, Li Y, Flanigan W, Walker A, O'Shea A, Kendziorski C, Kreeger PK. Ovarian cancer cells direct monocyte differentiation through a non-canonical pathway. BMC Cancer 2020; 20:1008. [PMID: 33069212 PMCID: PMC7568422 DOI: 10.1186/s12885-020-07513-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Alternatively-activated macrophages (AAMs), an anti-inflammatory macrophage subpopulation, have been implicated in the progression of high grade serous ovarian carcinoma (HGSOC). Increased levels of AAMs are correlated with poor HGSOC survival rates, and AAMs increase the attachment and spread of HGSOC cells in vitro. However, the mechanism by which monocytes in the HGSOC tumor microenvironment are differentiated and polarized to AAMs remains unknown. METHODS Using an in vitro co-culture device, we cultured naïve, primary human monocytes with a panel of five HGSOC cell lines over the course of 7 days. An empirical Bayesian statistical method, EBSeq, was used to couple RNA-seq with observed monocyte-derived cell phenotype to explore which HGSOC-derived soluble factors supported differentiation to CD68+ macrophages and subsequent polarization towards CD163+ AAMs. Pathways of interest were interrogated using small molecule inhibitors, neutralizing antibodies, and CRISPR knockout cell lines. RESULTS HGSOC cell lines displayed a wide range of abilities to generate AAMs from naïve monocytes. Much of this variation appeared to result from differential ability to generate CD68+ macrophages, as most CD68+ cells were also CD163+. Differences in tumor cell potential to generate macrophages was not due to a MCSF-dependent mechanism, nor variance in established pro-AAM factors. TGFα was implicated as a potential signaling molecule produced by tumor cells that could induce macrophage differentiation, which was validated using a CRISPR knockout of TGFA in the OVCAR5 cell line. CONCLUSIONS HGSOC production of TGFα drives monocytes to differentiate into macrophages, representing a central arm of the mechanism by which AAMs are generated in the tumor microenvironment.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Ying Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Will Flanigan
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Alyssa Walker
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Andrea O'Shea
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA.
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Martin J, Wehbi M, Echalier C, Hunger S, Bethry A, Garric X, Pinese C, Martinez J, Vezenkov L, Subra G, Mehdi A. Direct Synthesis of Peptide-Containing Silicones: A New Way to Bioactive Materials. Chemistry 2020; 26:12839-12845. [PMID: 32516440 DOI: 10.1002/chem.202001571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/26/2020] [Indexed: 11/09/2022]
Abstract
A simple and efficient way to synthesize peptide-containing silicone materials is described. Silicone oils containing a chosen ratio of bioactive peptide sequences were prepared by acid-catalyzed copolymerization of dichlorodimethylsilane, hybrid dichloromethyl peptidosilane, and Si(vinyl)- or SiH-functionalized monomers. Functionalized silicone oils were first obtained and then, after hydrosilylation cross-linking, bioactive polydimethylsiloxane (PDMS)-based materials were straightforwardly obtained. The introduction of an antibacterial peptide yielded PDMS materials showing activity against Staphylococcus aureus. PDMS containing RGD ligands showed improved cell-adhesion properties. This generic method was fully compatible with the stability of peptides and thus opened the way to the synthesis of a wide range of biologically active silicones.
Collapse
Affiliation(s)
- Julie Martin
- CNRS, ENSCM, ICGM Univ. Montpellier, 34095, Montpellier, France.,CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Mohammad Wehbi
- CNRS, ENSCM, ICGM Univ. Montpellier, 34095, Montpellier, France
| | - Cécile Echalier
- CNRS, ENSCM, ICGM Univ. Montpellier, 34095, Montpellier, France.,CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Sylvie Hunger
- CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Audrey Bethry
- CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Xavier Garric
- CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Coline Pinese
- CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Jean Martinez
- CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | | | - Gilles Subra
- CNRS, ENSCM, IBMM Univ. Montpellier, 34095, Montpellier, France
| | - Ahmad Mehdi
- CNRS, ENSCM, ICGM Univ. Montpellier, 34095, Montpellier, France
| |
Collapse
|
6
|
Fogg KC, Olson WR, Miller JN, Khan A, Renner C, Hale I, Weisman PS, Kreeger PK. Alternatively activated macrophage-derived secretome stimulates ovarian cancer spheroid spreading through a JAK2/STAT3 pathway. Cancer Lett 2019; 458:92-101. [PMID: 31129149 DOI: 10.1016/j.canlet.2019.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) metastasizes when tumor spheroids detach from the primary tumor and re-attach throughout the peritoneal cavity. Once the cancer cells have implanted in these new sites, the development of metastatic lesions is dependent on the disaggregation of cancer cells from the spheroids and subsequent expansion across the collagenous extracellular matrix (ECM). As HGSOC progresses an increase in alternatively activated macrophages (AAMs) in the surrounding ascites fluid has been observed and AAMs have been shown to enhance tumor invasion and growth in a wide range of cancers. We hypothesized that soluble factors from AAMs in the peritoneal microenvironment promote the disaggregation of ovarian cancer spheroids across the underlying ECM. We determined that co-culture with AAMs significantly increased HGSOC spheroid spreading across a collagen matrix. Multivariate modeling identified AAM-derived factors that correlated with enhanced spread of HGSOC spheroids and experimental validation showed that each individual cell line responded to a distinct AAM-derived factor (FLT3L, leptin, or HB-EGF). Despite this ligand-level heterogeneity, we determined that the AAM-derived factors utilized a common signaling pathway to induce spheroid spreading: JAK2/STAT3 activation followed by MMP-9 mediated spreading. Furthermore, immunostaining demonstrated that FLT3, LEPR, EGFR, and pSTAT3 were upregulated in metastases in HGSOC patients, with substantial patient-to-patient heterogeneity. These results suggest that inhibiting individual soluble factors will not inhibit AAM-induced effects across a broad group of patients; instead, the downstream JAK2/STAT3/MMP-9 pathway should be examined as potential therapeutic targets to slow metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Will R Olson
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jamison N Miller
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Aisha Khan
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Carine Renner
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Isaac Hale
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul S Weisman
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
7
|
Bidirectional Transcriptome Analysis of Rat Bone Marrow-Derived Mesenchymal Stem Cells and Activated Microglia in an In Vitro Coculture System. Stem Cells Int 2018; 2018:6126413. [PMID: 30151012 PMCID: PMC6087576 DOI: 10.1155/2018/6126413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
Microglia contribute to the regulation of neuroinflammation and play an important role in the pathogenesis of brain diseases. Thus, regulation of neuroinflammation triggered by activated microglia in brain diseases has become a promising curative strategy. Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been shown to have therapeutic effects, resulting from the regulation of inflammatory conditions in the brain. In this study, we investigated differential gene expression in rat BM-MSCs (rBM-MSCs) that were cocultured with lipopolysaccharide- (LPS-) stimulated primary rat microglia using microarray analysis and evaluated the functional relationships through Ingenuity Pathway Analysis (IPA). We also evaluated the effects of rBM-MSC on LPS-stimulated microglia using a reverse coculture system and the same conditions of the transcriptomic analysis. In the transcriptome of rBM-MSCs, 67 genes were differentially expressed, which were highly related with migration of cells, compared to control. The prediction of the gene network using IPA and experimental validation showed that LPS-stimulated primary rat microglia increase the migration of rBM-MSCs. Reversely, expression patterns of the transcriptome in LPS-stimulated primary rat microglia were changed when cocultured with rBM-MSCs. Our results showed that 65 genes were changed, which were highly related with inflammatory response, compared to absence of rBM-MSCs. In the same way with the aforementioned, the prediction of the gene network and experimental validation showed that rBM-MSCs decrease the inflammatory response of LPS-stimulated primary rat microglia. Our data indicate that LPS-stimulated microglia increase the migration of rBM-MSCs and that rBM-MSCs reduce the inflammatory activity in LPS-stimulated microglia. The results of this study show complex mechanisms underlying the interaction between rBM-MSCs and activated microglia and may be helpful for the development of stem cell-based strategies for brain diseases.
Collapse
|
8
|
Carroll MJ, Fogg KC, Patel HA, Krause HB, Mancha AS, Patankar MS, Weisman PS, Barroilhet L, Kreeger PK. Alternatively-Activated Macrophages Upregulate Mesothelial Expression of P-Selectin to Enhance Adhesion of Ovarian Cancer Cells. Cancer Res 2018; 78:3560-3573. [PMID: 29739756 DOI: 10.1158/0008-5472.can-17-3341] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
Peritoneal metastasis of high-grade serous ovarian cancer (HGSOC) occurs when tumor cells suspended in ascites adhere to mesothelial cells. Despite the strong relationship between metastatic burden and prognosis in HGSOC, there are currently no therapies specifically targeting the metastatic process. We utilized a coculture model and multivariate analysis to examine how interactions between tumor cells, mesothelial cells, and alternatively-activated macrophages (AAM) influence the adhesion of tumor cells to mesothelial cells. We found that AAM-secreted MIP-1β activates CCR5/PI3K signaling in mesothelial cells, resulting in expression of P-selectin on the mesothelial cell surface. Tumor cells attached to this de novo P-selectin through CD24, resulting in increased tumor cell adhesion in static conditions and rolling underflow. C57/BL6 mice treated with MIP-1β exhibited increased P-selectin expression on mesothelial cells lining peritoneal tissues, which enhanced CaOV3 adhesion ex vivo and ID8 adhesion in vivo Analysis of samples from patients with HGSOC confirmed increased MIP-1β and P-selectin, suggesting that this novel multicellular mechanism could be targeted to slow or stop metastasis in HGSOC by repurposing anti-CCR5 and P-selectin therapies developed for other indications.Significance: This study reports novel insights on the peritoneal dissemination occurring during progression of ovarian cancer and has potential for therapeutic intervention.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3560/F1.large.jpg Cancer Res; 78(13); 3560-73. ©2018 AACR.
Collapse
Affiliation(s)
- Molly J Carroll
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Harin A Patel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Harris B Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne-Sophie Mancha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,SURE-REU, University of Wisconsin-Madison, Madison, Wisconsin
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul S Weisman
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lisa Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin. .,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
9
|
Carroll MJ, Kapur A, Felder M, Patankar MS, Kreeger PK. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget 2018; 7:86608-86620. [PMID: 27888810 PMCID: PMC5349939 DOI: 10.18632/oncotarget.13474] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.
Collapse
Affiliation(s)
- Molly J Carroll
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, WI, USA
| |
Collapse
|
10
|
Yu X, Xiao J, Dang F. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5891-5898. [PMID: 25966872 DOI: 10.1021/acs.langmuir.5b01085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) has become a widely used material for microfluidic and biological applications. However, PDMS has unacceptably high levels of nonspecific protein adsorption, which significantly lowers the performance of PDMS-based microfluidic chips. Most existing methods to reduce protein fouling of PDMS are to make the surface more hydrophilic by surface oxidization, polymer grafting, and physisorbed coatings. These methods suffer from the relatively short-term stability, the multistep complex treatment procedure, or the insufficient adsorption reduction. Herein, we developed a novel and facile modification method based on self-assembled peptides with well-tailored amino acid composition and sequence, which can also interact strongly with the PDMS surface in the same way as proteins, for suppressing the nonspecific protein fouling and improving the biocompatibility of PDMS-based microfluidic chips. We first demonstrated that an ionic complementary peptide, EAR16-II with a sequence of [(Ala-Glu-Ala-Glu-Ala-Arg-Ala-Arg)2], can readily self-assemble into an amphipathic film predominantly composed of tightly packed β-sheets on the native hydrophobic and plasma-oxidized hydrophilic PDMS surfaces upon low concentrations of carbohydrates. The self-assembled EAR16-II amphipathic film exposed its hydrophobic side to the solution and thus rendered the PDMS surface hydrophobic with water contact angles (WCAs) of around 110.0°. However, the self-assembled EAR16-II amphipathic film exhibited excellent protein-repelling and blood compatibility properties comparable to or better than those obtained with previously reported methods. A schematic model has been proposed to explain the interactions of EAR16-II with the PDMS surface and the antifouling capability of EAR16-II coatings at a molecular level. The current work will pave the way to the development of novel coating materials to address the nonspecific protein adsorption on PDMS, thereby broadening the potential uses of PDMS-based microfluidic chips in complex biological analysis.
Collapse
Affiliation(s)
- Xiaoling Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Junzhu Xiao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China
| |
Collapse
|
11
|
Wu Q, Gao D, Wei J, Jin F, Xie W, Jiang Y, Liu H. Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening. Chem Commun (Camb) 2014; 50:2762-4. [DOI: 10.1039/c3cc49771b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-layer microfluidic device was developed for characterization of drug metabolism and cytotoxicity assays on a single device that overcomes many limitations of existing methods. And it also shows potential for high-throughput drug screening.
Collapse
Affiliation(s)
- Qin Wu
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen, China
- Key Laboratory of Metabolomics at Shenzhen
| | - Juntong Wei
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Feng Jin
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen, China
| | - Weiyi Xie
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Yuyang Jiang
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen, China
- Key Laboratory of Metabolomics at Shenzhen
| |
Collapse
|