1
|
Lyu F, Tomita T, Abe N, Hiraoka H, Hashiya F, Nakashima Y, Kajihara S, Tomoike F, Shu Z, Onizuka K, Kimura Y, Abe H. Topological capture of mRNA for silencing gene expression. Chem Commun (Camb) 2023; 59:11564-11567. [PMID: 37682012 DOI: 10.1039/d2cc06189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We describe herein topological mRNA capture using branched oligodeoxynucleotides (ODNs) with multiple reactive functional groups. These fragmented ODNs efficiently formed topological complexes on template mRNA in vitro. In cell-based experiments targeting AcGFP mRNA, the bifurcated reactive ODNs showed a much larger gene silencing effect than the corresponding natural antisense ODN.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Takashi Tomita
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Fumitaka Hashiya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Shiryu Kajihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Fumiaki Tomoike
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Yamaoka K, Oikawa R, Abe N, Nakamoto K, Tomoike F, Hashiya F, Kimura Y, Abe H. Completely Chemically Synthesized Long DNA Can be Transcribed in Human Cells. Chembiochem 2021; 22:3273-3276. [PMID: 34519401 DOI: 10.1002/cbic.202100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/11/2021] [Indexed: 11/10/2022]
Abstract
Chemical ligation reaction of DNA is useful for the construction of long functional DNA using oligonucleotide fragments that are prepared by solid phase chemical synthesis. However, the unnatural linkage structure formed by the ligation reaction generally impairs the biological function of the resulting ligated DNA. We achieved the complete chemical synthesis of 78 and 258 bp synthetic DNAs via multiple chemical ligation reactions with phosphorothioate and haloacyl-modified DNA fragments. The latter synthetic DNA, coding shRNA for luciferase genes with a designed truncated SV promoter sequence, successfully induced the expected gene silencing effect in HeLa cells.
Collapse
Affiliation(s)
- Kazuki Yamaoka
- Graduate School of Science, Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ryota Oikawa
- Graduate School of Science, Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Graduate School of Science, Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Kosuke Nakamoto
- Graduate School of Science, Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Department of Life Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Graduate School of Science, Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Graduate School of Science, Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,CREST, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
3
|
Yang L, Dmochowski IJ. Conditionally Activated ("Caged") Oligonucleotides. Molecules 2021; 26:1481. [PMID: 33803234 PMCID: PMC7963183 DOI: 10.3390/molecules26051481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023] Open
Abstract
Conditionally activated ("caged") oligonucleotides provide useful spatiotemporal control for studying dynamic biological processes, e.g., regulating in vivo gene expression or probing specific oligonucleotide targets. This review summarizes recent advances in caging strategies, which involve different stimuli in the activation step. Oligo cyclization is a particularly attractive caging strategy, which simplifies the probe design and affords oligo stabilization. Our laboratory developed an efficient synthesis for circular caged oligos, and a circular caged antisense DNA oligo was successfully applied in gene regulation. A second technology is Transcriptome In Vivo Analysis (TIVA), where caged oligos enable mRNA isolation from single cells in living tissue. We highlight our development of TIVA probes with improved caging stability. Finally, we illustrate the first protease-activated oligo probe, which was designed for caspase-3. This expands the toolkit for investigating the transcriptome under a specific physiologic condition (e.g., apoptosis), particularly in specimens where light activation is impractical.
Collapse
Affiliation(s)
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA;
| |
Collapse
|
4
|
Janett E, Diep KL, Fromm KM, Bochet CG. A Simple Reaction for DNA Sensing and Chemical Delivery. ACS Sens 2020; 5:2338-2343. [PMID: 32804492 DOI: 10.1021/acssensors.0c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions templated by nucleic acids are currently at the heart of applications in biosensing and drug release. The number of chemical reactions selectively occurring only in the presence of the template, in aqueous solutions, and at room temperature and able to release a chemical moiety is still very limited. Here, we report the use of the p-nitrophenyl carbonate (NPC) as a new reactive moiety for DNA templated reactions releasing a colored reporter by reaction with a simple amine. The easily synthesized p-nitrophenyl carbonate was integrated in an oligonucleotide and showed a very good stability as well as a high reactivity toward amines, without the need for any supplementary reagent, quantitatively releasing the red p-nitrophenolate with a half-life of about 1 h.
Collapse
Affiliation(s)
- Elia Janett
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Christian G. Bochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Kimura Y, Shu Z, Ito M, Abe N, Nakamoto K, Tomoike F, Shuto S, Ito Y, Abe H. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chem Commun (Camb) 2020; 56:466-469. [DOI: 10.1039/c9cc04872c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a new approach for RNA interference, so-called “build-up RNAi” approach, where single-strand circular RNAs with a photocleavable unit or disulfide moiety were used as siRNA precursors.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Zhaoma Shu
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Naoko Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kosuke Nakamoto
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Wako-Shi
- Japan
| | - Hiroshi Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
6
|
Maruyama H, Oikawa R, Hayakawa M, Takamori S, Kimura Y, Abe N, Tsuji G, Matsuda A, Shuto S, Ito Y, Abe H. Chemical ligation of oligonucleotides using an electrophilic phosphorothioester. Nucleic Acids Res 2017; 45:7042-7048. [PMID: 28520986 PMCID: PMC5499596 DOI: 10.1093/nar/gkx459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/11/2017] [Indexed: 11/14/2022] Open
Abstract
We developed a new approach for chemical ligation of oligonucleotides using the electrophilic phosphorothioester (EPT) group. A nucleophilic phosphorothioate group on oligonucleotides was converted into the EPT group by treatment with Sanger's reagent (1-fluoro-2,4-dinitrobenzene). EPT oligonucleotides can be isolated, stored frozen, and used for the ligation reaction. The reaction of the EPT oligonucleotide and an amino-modified oligonucleotide took place without any extra reagents at pH 7.0–8.0 at room temperature, and resulted in a ligation product with a phosphoramidate bond with a 39–85% yield. This method has potential uses in biotechnology and chemical biology.
Collapse
Affiliation(s)
- Hideto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ryota Oikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Mayu Hayakawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shono Takamori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Genichiro Tsuji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1, Hirosawa, Wako-Shi, Saitama, 351-0198, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1, Hirosawa, Wako-Shi, Saitama, 351-0198, Japan
| |
Collapse
|