1
|
Corner TP, Salah E, Tumber A, Brewitz L, Schofield CJ. Biochemical investigations using mass spectrometry to monitor JMJD6-catalysed hydroxylation of multi-lysine containing bromodomain-derived substrates. RSC Chem Biol 2025; 6:642-656. [PMID: 40046450 PMCID: PMC11878239 DOI: 10.1039/d4cb00311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/19/2025] [Indexed: 04/04/2025] Open
Abstract
Jumonji-C domain-containing protein 6 (JMJD6) is a human 2-oxoglutarate (2OG)/Fe(ii)-dependent oxygenase catalysing post-translational C5 hydroxylation of multiple lysine residues, including in the bromodomain-containing proteins BRD2, BRD3 and BRD4. The role(s) of JMJD6-catalysed substrate hydroxylation are unclear. JMJD6 is important in development and JMJD6 catalysis may promote cancer. We report solid-phase extraction coupled to mass spectrometry assays monitoring JMJD6-catalysed hydroxylation of BRD2-4 derived oligopeptides containing multiple lysyl residues. The assays enabled determination of apparent steady-state kinetic parameters for 2OG, Fe(ii), l-ascorbate, O2 and BRD substrates. The JMJD6 K app m for O2 was comparable to that reported for the structurally related 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), suggesting potential for limitation of JMJD6 activity by O2 availability in cells, as proposed for FIH and some other 2OG oxygenases. The new assays will help development of small-molecule JMJD6 inhibitors for functional assignment studies and as potential cancer therapeutics.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
2
|
Meng D, Lyu Y, Ni C, Zhou M, Li Y, Hu J. S
‐(Trifluoromethyl)Benzothioate (TFBT): A KF‐Based Reagent for Nucleophilic Trifluoromethylthiolation. Chemistry 2022; 28:e202104395. [DOI: 10.1002/chem.202104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Depei Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yichong Lyu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Min Zhou
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yang Li
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
3
|
Abstract
AbstractMonofluoromethylsulfonium salts are emerging reagents for the fluoromethylation and fluoromethylenation or fluoromethylene transfer. Using this type of reagent is a simple approach for the introduction of the fluoromethyl group into a wide range of nucleophiles using mild basic conditions. Recently, fluoromethylsulfonium salts have been demonstrated to act as a synthetic equivalent for the challenging fluoromethylene synthon. For instance, these reagents can be used for the direct synthesis of monofluoroepoxides and fluorocyclopropanes from activated alkenes via a sulfur fluoromethylide intermediate. Sulfonium salts are an alternative, easy-to-handle option to volatile and environmentally concerning freons for achieving monofluorinated compounds. This review focuses on synthetic application of these reagents known to date.1 Introduction2 Fluoromethylation of O-, N-, S-, P-, and C-Nucleophiles3 Sulfonium Salts for Radical Monofluoromethylation of Alkenes4 Sulfonium Salts for Fluoromethylene Transfer5 Conclusions
Collapse
|
4
|
Devillers E, Chelain E, Dalvit C, Brigaud T, Pytkowicz J. (R)-α-Trifluoromethylalanine as a 19 F NMR Probe for the Monitoring of Protease Digestion of Peptides. Chembiochem 2021; 23:e202100470. [PMID: 34738292 DOI: 10.1002/cbic.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Fluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in 19 F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
Collapse
Affiliation(s)
- Emmanuelle Devillers
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Evelyne Chelain
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Claudio Dalvit
- Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.,Present address: Lavis, Trento, Italy
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Julien Pytkowicz
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
5
|
Sperga A, Melngaile R, Kazia A, Belyakov S, Veliks J. Optimized Monofluoromethylsulfonium Reagents for Fluoromethylene-Transfer Chemistry. J Org Chem 2021; 86:3196-3212. [PMID: 33502201 DOI: 10.1021/acs.joc.0c02561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An investigation of the properties and reactivity of fluoromethylsulfonium salts resulted in the redesign of the reagents for fluoromethylene transfer chemistry. The model reaction, fluorocyclopropanation of nitrostyrene, turned out to be a suitable platform for the discovery of more streamlined fluoromethylene transfer reagents. The incorporation of halides on one aryl ring increased the reactivity, and 2,4-dimethyl substitution on the other aryl ring provided a balance between the reactivity/crystallinity of the reagent as well as the atom economy. The utility of new reagents was demonstrated by the development of an efficient fluorocyclopropanation protocol to access a range of monofluorinated cyclopropane derivatives.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Renate Melngaile
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Armands Kazia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
6
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
7
|
Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int J Mol Sci 2020; 21:E9451. [PMID: 33322546 PMCID: PMC7764450 DOI: 10.3390/ijms21249451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Trimethyllysine is an important post-translationally modified amino acid with functions in the carnitine biosynthesis and regulation of key epigenetic processes. Protein lysine methyltransferases and demethylases dynamically control protein lysine methylation, with each state of methylation changing the biophysical properties of lysine and the subsequent effect on protein function, in particular histone proteins and their central role in epigenetics. Epigenetic reader domain proteins can distinguish between different lysine methylation states and initiate downstream cellular processes upon recognition. Dysregulation of protein methylation is linked to various diseases, including cancer, inflammation, and genetic disorders. In this review, we cover biomolecular studies on the role of trimethyllysine in carnitine biosynthesis, different enzymatic reactions involved in the synthesis and removal of trimethyllysine, trimethyllysine recognition by reader proteins, and the role of trimethyllysine on the nucleosome assembly.
Collapse
Affiliation(s)
| | | | | | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.N.M.); (J.C.J.H.); (M.R.B.P.)
| |
Collapse
|
8
|
Dalvit C, Veronesi M, Vulpetti A. Fluorine NMR functional screening: from purified enzymes to human intact living cells. JOURNAL OF BIOMOLECULAR NMR 2020; 74:613-631. [PMID: 32347447 DOI: 10.1007/s10858-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.
Collapse
Affiliation(s)
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| |
Collapse
|
9
|
Veliks J, Kazia A. Fluoromethylene Transfer from Diarylfluoromethylsulfonium Salts: Synthesis of Fluorinated Epoxides. Chemistry 2019; 25:3786-3789. [PMID: 30681208 DOI: 10.1002/chem.201900349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 01/17/2023]
Abstract
Diarylfluoromethyl sulfonium salts are efficient fluoromethylene transfer reagents equivalent to fluorocarbene, which is difficult to access. This was demonstrated by the development of a monofluorinated Johnson-Corey-Chaykovsky reaction with ketones and aldehydes, delivering uncommon 2-unsubstituted fluoroepoxides. This is the first evidence for the feasibility of sulfur fluoromethylylide and its action as a reaction intermediate.
Collapse
Affiliation(s)
- Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Armands Kazia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| |
Collapse
|
10
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
11
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Al Temimi AHK, Pieters BJGE, Reddy YV, White PB, Mecinović J. Substrate scope for trimethyllysine hydroxylase catalysis. Chem Commun (Camb) 2018; 52:12849-12852. [PMID: 27730239 DOI: 10.1039/c6cc07845a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethyllysine hydroxylase (TMLH) is a non-haem Fe(ii) and 2-oxoglutarate dependent oxygenase that catalyses the C-3 hydroxylation of an unactivated C-H bond in l-trimethyllysine in the first step of carnitine biosynthesis. The examination of trimethyllysine analogues as substrates for human TMLH reveals that the enzyme does hydroxylate substrates other than natural l-trimethyllysine.
Collapse
Affiliation(s)
- Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Bas J G E Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Y Vijayendar Reddy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Mbenza NM, Vadakkedath PG, McGillivray DJ, Leung IKH. NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases. J Inorg Biochem 2017; 177:384-394. [PMID: 28893416 DOI: 10.1016/j.jinorgbio.2017.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
The non-haem Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases belong to a superfamily of structurally-related enzymes that play important biological roles in plants, microorganisms and animals. Structural, mechanistic and functional studies of 2OG oxygenases require efficient and effective biophysical tools. Nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study this enzyme superfamily. It has been applied to obtain information about enzyme kinetics, identify and characterise 2OG oxygenase-catalysed oxidation products, elucidate the catalytic mechanism, monitor ligand binding and study protein dynamics. This review summarises the types of information that NMR spectroscopy can provide in the studies of 2OG oxygenases, highlights the advantages of the technique and describes its drawbacks.
Collapse
Affiliation(s)
- Naasson M Mbenza
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Praveen G Vadakkedath
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.; MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.; MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand..
| |
Collapse
|
14
|
Vijayendar Reddy Y, Al Temimi AHK, Mecinović J. Fluorinated trimethyllysine as a 19F NMR probe for trimethyllysine hydroxylase catalysis. Org Biomol Chem 2017; 15:1350-1354. [DOI: 10.1039/c6ob02683d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human trimethyllysine hydroxylase (TMLH)-catalysed C-3 hydroxylation of Nε-(fluoromethyl)dimethyllysine can be monitored by 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Y. Vijayendar Reddy
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Abbas H. K. Al Temimi
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
15
|
Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Anal Biochem 2015; 495:52-9. [PMID: 26686030 DOI: 10.1016/j.ab.2015.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.
Collapse
|
16
|
Rydzik AM, Leung IKH, Kochan GT, Loik ND, Henry L, McDonough MA, Claridge TDW, Schofield CJ. Comparison of the substrate selectivity and biochemical properties of human and bacterial γ-butyrobetaine hydroxylase. Org Biomol Chem 2015; 12:6354-8. [PMID: 25030770 DOI: 10.1039/c4ob01167h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
2-Oxoglutarate and iron dependent oxygenases have potential for the stereoselective hydroxylation of amino acids and related compounds. The biochemical and kinetic properties of recombinant γ-butyrobetaine hydroxylase from human and Pseudomonas sp. AK1 were compared. The results reveal differences between the two BBOXs, including in their stimulation by ascorbate. Despite their closely related sequences, the two enzymes also display different substrate selectivities, including for the production of (di)hydroxylated betaines, implying use of engineered BBOXs for biocatalytic purposes may be productive.
Collapse
Affiliation(s)
- Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rydzik AM, Brem J, Struwe WB, Kochan GT, Benesch JL, Schofield CJ. Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Bioorg Med Chem Lett 2014; 24:4954-7. [DOI: 10.1016/j.bmcl.2014.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022]
|
18
|
Rydzik AM, Leung IKH, Kochan GT, McDonough MA, Claridge TDW, Schofield CJ. Oxygenase-catalyzed desymmetrization of N,N-dialkyl-piperidine-4-carboxylic acids. Angew Chem Int Ed Engl 2014; 53:10925-7. [PMID: 25164544 PMCID: PMC4497603 DOI: 10.1002/anie.201406125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 12/14/2022]
Abstract
γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers.
Collapse
Affiliation(s)
- Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Ivanhoe K H Leung
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Grazyna T Kochan
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosvelt DriveHeadington OX3 7DQ, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| |
Collapse
|
19
|
Rydzik AM, Leung IKH, Kochan GT, McDonough MA, Claridge TDW, Schofield CJ. Oxygenase-Catalyzed Desymmetrization ofN,N-Dialkyl-piperidine-4-carboxylic Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Ni C, Hu M, Hu J. Good partnership between sulfur and fluorine: sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. Chem Rev 2014; 115:765-825. [PMID: 25144886 DOI: 10.1021/cr5002386] [Citation(s) in RCA: 966] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Ling-Ling Road, Shanghai City, Shanghai 200032, China
| | | | | |
Collapse
|