1
|
Ning A, Li J, Du L, Yang X, Liu J, Yang Z, Zhong J, Saiz-Lopez A, Liu L, Francisco JS, Zhang X. Heterogenous Chemistry of I 2O 3 as a Critical Step in Iodine Cycling. J Am Chem Soc 2024. [PMID: 39546803 DOI: 10.1021/jacs.4c13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Global iodine emissions have been increasing rapidly in recent decades, further influencing the Earth's climate and human health. However, our incomplete understanding of the iodine chemical cycle, especially the fate of higher iodine oxides, introduces substantial uncertainties into atmospheric modeling. I2O3 was previously deemed a "dead end" in iodine chemistry; however, we provide atomic-level evidence that I2O3 can undergo rapid air-water or air-ice interfacial reactions within several picoseconds; these reactions are facilitated by prevalent chemicals on seawater such as amines and halide ions, to produce photolabile reactive iodine species such as HOI and IX (X = I, Br, and Cl). The heterogeneous chemistry of I2O3 leads to the rapid formation of iodate ions (IO3-), which is the predominant soluble iodine and its concentration cannot be well explained by current chemistry. These new loss pathways for atmospheric I2O3 can further explain its absence in field observations and its presence in laboratory experiments; furthermore, these pathways represent a heterogeneous recycling mechanism that can activate the release of reactive iodine from oceans, polar ice/snowpack, or aerosols. Rapid reactive adsorption of I2O3 can also promote the growth of marine aerosols. These findings provide novel insights into iodine geochemical cycling.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Du
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaohua Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, 119, 28006 Madrid, Spain
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Engsvang M, Wu H, Elm J. Iodine Clusters in the Atmosphere I: Computational Benchmark and Dimer Formation of Oxyacids and Oxides. ACS OMEGA 2024; 9:31521-31532. [PMID: 39072118 PMCID: PMC11270685 DOI: 10.1021/acsomega.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The contribution of iodine-containing compounds to atmospheric new particle formation is still not fully understood, but iodic acid and iodous acid are thought to be significant contributors. While several quantum chemical studies have been carried out on clusters containing iodine, there is no comprehensive benchmark study quantifying the accuracy of the applied methods. Here, we present the first study in a series that investigate the role of iodine species in atmospheric cluster formation. In this work, we have studied the iodic acid, iodous acid, iodine tetroxide, and iodine pentoxide monomers and their dimers formed with common atmospheric precursors. We have tested the accuracy of commonly applied methods for calculating the geometry of the monomers, thermal corrections of monomers and dimers, the contribution of spin-orbit coupling to monomers and dimers, and finally, the accuracy of the electronic energy correction calculated at different levels of theory. We find that optimizing the structures either at the ωB97X-D3BJ/aug-cc-pVTZ-PP or the M06-2X/aug-cc-pVTZ-PP level achieves the best thermal contribution to the binding free energy. The electronic energy correction can then be calculated at the ZORA-DLPNO-CCSD(T0) level with the SARC-ZORA-TZVPP basis for iodine and ma-ZORA-def2-TZVPP for non-iodine atoms. We applied this methodology to calculate the binding free energies of iodine-containing dimer clusters, where we confirm the qualitative trends observed in previous studies. However, we identify that previous studies overestimate the stability of the clusters by several kcal/mol due to the neglect of relativistic effects. This means that their contributions to the currently studied nucleation pathways of new particle formation are likely overestimated.
Collapse
Affiliation(s)
- Morten Engsvang
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Haide Wu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Frederiks NC, Johnson CJ. Photochemical Mechanisms in Atmospherically Relevant Iodine Oxide Clusters. J Phys Chem Lett 2024; 15:6306-6314. [PMID: 38856106 DOI: 10.1021/acs.jpclett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atmospheric new particle formation events can be driven by iodine oxides or oxoacids via both neutral and ionic mechanisms. Photolysis of new particles likely plays a significant role in their growth mechanisms, but their spectra and photolysis mechanisms remain difficult to characterize. We recorded ultraviolet (UV) photodissociation spectra of (I2O5)0-3(IO3-) clusters, observing loss of an O atom, I2O4, and (I2O5)1,2 in the atmospherically relevant range of 300-340 nm. With increasing cluster size, the intensity of absorption red shifts and generally increases, suggesting particles photolyze more frequently as they grow. Estimates of the rates indicate that even relatively small clusters are likely to undergo photolysis under high-UV conditions. Vibrational spectra identify the covalent moiety I3O8- as the likely chromophore, not IO3-. The I2O5 loss pathway competes with particle growth, while the slower O loss pathway likely produces 3O + 3(cluster) products that could drive subsequent intraparticle chemistry, particularly with co-adsorbed organic or amine species.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
4
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
5
|
Ning A, Zhong J, Li L, Li H, Liu J, Liu L, Liang Y, Li J, Zhang X, Francisco JS, He H. Chemical Implications of Rapid Reactive Absorption of I 2O 4 at the Air-Water Interface. J Am Chem Soc 2023; 145:10817-10825. [PMID: 37133920 DOI: 10.1021/jacs.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Marine aerosol formation involving iodine-bearing species significantly affects the global climate and radiation balance. Although recent studies outline the critical role of iodine oxide in nucleation, much less is known about its contribution to aerosol growth. This paper presents molecular-level evidence that the air-water interfacial reaction of I2O4 mediated by potent atmospheric chemicals, such as sulfuric acid (H2SO4) and amines [e.g., dimethylamine (DMA) and trimethylamine (TMA)], can occur rapidly on a picosecond time scale by Born-Oppenheimer molecular dynamics simulations. The interfacial water bridges the reactants while facilitating the DMA-mediated proton transfer and stabilizing the ionic products of H2SO4-involved reactions. The identified heterogeneous mechanisms exhibit the dual contribution to aerosol growth: (i) the ionic products (e.g., IO3-, DMAH+, TMAH+, and HSO4-) formed by reactive adsorption possess less volatility than the reactants and (ii) these ions, such as alkylammonium salts (e.g., DMAH+), are also highly hydrophilic, further facilitating hygroscopic growth. This investigation enhances not only our understanding of heterogeneous iodine chemistry but also the impact of iodine oxide on aerosol growth. Also, these findings can bridge the gap between the abundance of I2O4 in the laboratory and its absence in field-collected aerosols and provide an explanation for the missing source of IO3-, HSO4-, and DMAH+ in marine aerosols.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Liwen Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Study of the stability of iodine oxides (IxOy) aerosols in severe accident conditions. ANN NUCL ENERGY 2023. [DOI: 10.1016/j.anucene.2022.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
8
|
Zhang R, Xie HB, Ma F, Chen J, Iyer S, Simon M, Heinritzi M, Shen J, Tham YJ, Kurtén T, Worsnop DR, Kirkby J, Curtius J, Sipilä M, Kulmala M, He XC. Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14166-14177. [PMID: 36126141 PMCID: PMC9536010 DOI: 10.1021/acs.est.2c04328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- . Phone: +86-411-84707251
| | - Fangfang Ma
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Mario Simon
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Martin Heinritzi
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Jiali Shen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yee Jun Tham
- School
of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Douglas R. Worsnop
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne
Research, Inc., Billerica, Massachusetts 01821, United States
| | - Jasper Kirkby
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN,
the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Joachim Curtius
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Kulmala
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Xu-Cheng He
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Abstract
The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30-50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink. Heterogeneous reactions form low-volatility organic acids and alkylaminium salts in the particle phase, while further oligomerization of small α-dicarbonyls (e.g., glyoxal) drives the particle growth. This identified heterogeneous mechanism explains the occurrence of particle production events at organic vapor concentrations almost an order of magnitude lower than those required for growth via condensation alone. A notable fraction of iodine associated with these growing particles is recycled back into the gas phase, suggesting an effective transport mechanism for iodine to remote regions, acting as a "catalyst" for nucleation and subsequent new particle production in marine air.
Collapse
|
10
|
R'Mili B, Strekowski RS, Temime-Roussel B, Wortham H, Monod A. Important effects of relative humidity on the formation processes of iodine oxide particles from CH 3I photo-oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128729. [PMID: 35405585 DOI: 10.1016/j.jhazmat.2022.128729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, laboratory chamber experiments of gas-phase methyl iodide photolysis in the presence of ozone at three relative humidity conditions were performed to study the formation and physico-chemical properties of iodine oxide particles. The obtained results revealed significant morphological changes of iodine oxide particles that were observed to depend on relative humidity. The formed iodine oxide particles under dry conditions were supposed to be agglomerates of fine hygroscopic crystals. On the other hand, a humid atmosphere was observed to favor the formation of isomeric, tetragonal and orthorhombic hygroscopic crystals potentially composed of HIO3 likely formed from progressive hydration of iodine oxide clusters. This process leads to a release of molecular iodine, I2, which may indicate a potential role of I2O4 in the particles' evolution processes. The obtained results on the iodine oxides' behavior are important to the nuclear power plant safety industry since many of the organic iodides that may be released during a major nuclear power-plant accident contain radioactive isotopes of iodine that are known to have lethal or toxic impacts on human health.
Collapse
Affiliation(s)
- Badr R'Mili
- Aix-Marseille Univ, CNRS, LCE, Marseille, France
| | | | | | | | - Anne Monod
- Aix-Marseille Univ, CNRS, LCE, Marseille, France.
| |
Collapse
|
11
|
Gómez Martín JC, Lewis TR, James AD, Saiz-Lopez A, Plane JMC. Insights into the Chemistry of Iodine New Particle Formation: The Role of Iodine Oxides and the Source of Iodic Acid. J Am Chem Soc 2022; 144:9240-9253. [PMID: 35604404 PMCID: PMC9164234 DOI: 10.1021/jacs.1c12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Iodine chemistry
is an important driver of new particle formation
in the marine and polar boundary layers. There are, however, conflicting
views about how iodine gas-to-particle conversion proceeds. Laboratory
studies indicate that the photooxidation of iodine produces iodine
oxides (IxOy), which are well-known particle precursors. By contrast, nitrate
anion chemical ionization mass spectrometry (CIMS) observations in
field and environmental chamber studies have been interpreted as evidence
of a dominant role of iodic acid (HIO3) in iodine-driven
particle formation. Here, we report flow tube laboratory experiments
that solve these discrepancies by showing that both IxOy and HIO3 are involved in atmospheric new particle formation. I2Oy molecules (y = 2,
3, and 4) react with nitrate core ions to generate mass spectra similar
to those obtained by CIMS, including the iodate anion. Iodine pentoxide
(I2O5) produced by photolysis of higher-order
IxOy is hydrolyzed,
likely by the water dimer, to yield HIO3, which also contributes
to the iodate anion signal. We estimate that ∼50% of the iodate
anion signals observed by nitrate CIMS under atmospheric water vapor
concentrations originate from I2Oy. Under such conditions, iodine-containing clusters and particles
are formed by aggregation of I2Oy and HIO3, while under dry laboratory conditions,
particle formation is driven exclusively by I2Oy. An updated mechanism for iodine gas-to-particle
conversion is provided. Furthermore, we propose that a key iodine
reservoir species such as iodine nitrate, which we observe as a product
of the reaction between iodine oxides and the nitrate anion, can also
be detected by CIMS in the atmosphere.
Collapse
Affiliation(s)
| | - Thomas R Lewis
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain.,School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain
| | - John M C Plane
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
12
|
Sbai SE, Mejjad N, Norelyaqine A, Bentayeb F. Air quality change during the COVID-19 pandemic lockdown over the Auvergne-Rhône-Alpes region, France. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 14:617-628. [PMID: 33488840 PMCID: PMC7813977 DOI: 10.1007/s11869-020-00965-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/04/2020] [Indexed: 05/18/2023]
Abstract
UNLABELLED Under the rapid spread of coronavirus diseases (COVID-19) worldwide, a complete lockdown was imposed in France from March 17th to May 11th, 2020 to limit the virus spread. This lockdown affected significantly the atmospheric pollution levels due to the restrictions of human activities. In the present study, we investigate the evolution of air quality in the Auvergne-Rhône-Alpes region, focusing on nine atmospheric pollutants (NO2, NO, PM10, PM2.5, O3, VOC, CO, SO2, and isoprene). In Lyon, center of the region, the results indicated that NO2, NO, and CO levels were reduced by 67%, 78%, and 62%, respectively, resulting in a decrease in road traffic by 80%. However, O3, PM10, and PM2.5 were increased by 105%, 23%, and 53%, respectively, during the lockdown. The increase in ozone is explained by the dropping in NO and other gases linked to human activity, which consume ozone. Thus, the increase of solar radiation, sunshine, temperature, and humidity promoted the O3 formation during the lockdown. Besides, rising temperature enhances the BVOC emissions such as isoprene. In addition, volatile organic component (VOC) and SO2 remain almost stable and oxidation of these species leads to the formation of ozone and organic aerosol, which also explains the increase in PM during the lockdown. This study shows the contribution of atmospheric photochemistry to air pollution. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11869-020-00965-w.
Collapse
Affiliation(s)
- Salah Eddine Sbai
- Department of physics, Laboratoires de physique des hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| | - Nezha Mejjad
- Department of Geology, Faculty of Sciences, Ben M’Sik Hassan II University, Casablanca, Morocco
| | | | - Farida Bentayeb
- Department of physics, Laboratoires de physique des hauts Energies Modélisation et Simulation, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
13
|
A gas-to-particle conversion mechanism helps to explain atmospheric particle formation through clustering of iodine oxides. Nat Commun 2020; 11:4521. [PMID: 32908140 PMCID: PMC7481236 DOI: 10.1038/s41467-020-18252-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/12/2020] [Indexed: 11/10/2022] Open
Abstract
Emitted from the oceans, iodine-bearing molecules are ubiquitous in the atmosphere and a source of new atmospheric aerosol particles of potentially global significance. However, its inclusion in atmospheric models is hindered by a lack of understanding of the first steps of the photochemical gas-to-particle conversion mechanism. Our laboratory results show that under a high humidity and low HOx regime, the recently proposed nucleating molecule (iodic acid, HOIO2) does not form rapidly enough, and gas-to-particle conversion proceeds by clustering of iodine oxides (IxOy), albeit at slower rates than under dryer conditions. Moreover, we show experimentally that gas-phase HOIO2 is not necessary for the formation of HOIO2-containing particles. These insights help to explain new particle formation in the relatively dry polar regions and, more generally, provide for the first time a thermochemically feasible molecular mechanism from ocean iodine emissions to atmospheric particles that is currently missing in model calculations of aerosol radiative forcing. “How iodine-bearing molecules contribute to atmospheric aerosol formation is not well understood. Here, the authors provide a new gas-to-particle conversion mechanism and show that clustering of iodine oxides is an essential component of this process while previously proposed iodic acid does not play a large role.”
Collapse
|
14
|
Xia D, Chen J, Yu H, Xie HB, Wang Y, Wang Z, Xu T, Allen DT. Formation Mechanisms of Iodine-Ammonia Clusters in Polluted Coastal Areas Unveiled by Thermodynamics and Kinetic Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9235-9242. [PMID: 32589408 DOI: 10.1021/acs.est.9b07476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has been revealed that iodine species play important roles in atmospheric new particle formations (NPFs) in pristine coastal areas. However, it is unclear whether other atmospheric species, such as NH3, for which the levels in coastal areas of China are >2.5 × 1010 molecules·cm-3 are involved in the NPFs of iodine species, although NH3 has been proved to promote particle formation of H2SO4. Via high-level quantum chemical calculations and atmospheric cluster dynamic code simulations, this study unveiled new mechanisms of nucleation, in which NH3 mediates the formation of iodine particles by assisting hydrolysis of I2O5 or reacting with HIO3. The simulated formation rates of iodine-ammonia clusters via the new mechanisms are much higher than those simulated via sequential addition of HIO3 with subsequent release of H2O, under the condition that NH3 concentrations are higher than 1010 molecules·cm-3. The new mechanisms can well explain the observed cluster formation rates at a coastal site in Zhejiang of China. The findings not only expand the current understandings of the role of NH3 in NPFs but also highlight the importance of monitoring and evaluating NPFs via the iodine-ammonia cluster pathway in the coastal areas of China and other regions worldwide.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Huan Yu
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ya Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Tong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - David T Allen
- Center for Energy and Environmental Resources, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Wang YT, Ning CG, Liu HT, Wang LS. High-Resolution Photoelectron Imaging and Photodetachment Spectroscopy of Cryogenically Cooled IO –. J Phys Chem A 2020; 124:5720-5726. [DOI: 10.1021/acs.jpca.0c04080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Tian Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuan-Gang Ning
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Hong-Tao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
16
|
Kumar M, Trabelsi T, Gómez Martín JC, Saiz-Lopez A, Francisco JS. HIO x-IONO 2 Dynamics at the Air-Water Interface: Revealing the Existence of a Halogen Bond at the Atmospheric Aerosol Surface. J Am Chem Soc 2020; 142:12467-12477. [PMID: 32578419 DOI: 10.1021/jacs.0c05232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Iodine is enriched in marine aerosols, particularly in coastal mid-latitude atmospheric environments, where it initiates the formation of new aerosol particles with iodic acid (HIO3) composition. However, particle formation in polluted and semipolluted locations is inhibited when the iodine monoxide radical (IO) is intercepted by NO2 to form the iodine nitrate (IONO2). The primary fate of IONO2 is believed to be, besides photolysis, uptake by aerosol surfaces, leading to particulate iodine activation. Herein we have performed Born-Oppenheimer molecular dynamics (BOMD) simulations and gas-phase quantum chemical calculations to study the iodine acids-iodine nitrate [HIOx (x = 2 and 3)-IONO2] dynamics at the air-water interface modeled by a water droplet of 191 water molecules. The results indicate that IONO2 does not react directly with these iodine acids, but forms an unusual kind of interaction with them within a few picoseconds, which is characterized as halogen bonding. The halogen bond-driven HIO3-IONO2 complex at the air-water interface undergoes deprotonation and exists as IO3--IONO2 anion, whereas the HIO2-IONO2 complex does not exhibit any proton loss to the interfacial water molecules. The gas-phase quantum chemical calculations suggest that the HIO3-IONO2 and HIO2-IONO2 complexes have appreciable stabilization energies, which are significantly enhanced upon deprotonation of iodine acids, indicating that these halogen bonds are fairly stable. These IONO2-induced halogen bonds explain the rapid loss of IONO2 to background aerosol. Moreover, they appear to work against iodide formation. Thus, they may play an important role in enhancing the amount of atmospherically nonrecyclable iodine (iodate) in marine aerosol.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Tarek Trabelsi
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Juan Carlos Gómez Martín
- Solar System Department, Andalusian Institute for Astrophysics, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
17
|
|
18
|
Schleier D, Reusch E, Lummel L, Hemberger P, Fischer I. Threshold Photoelectron Spectroscopy of IO and HOI. Chemphyschem 2019; 20:2413-2416. [PMID: 31508875 PMCID: PMC6790590 DOI: 10.1002/cphc.201900813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Iodine oxides appear as reactive intermediates in atmospheric chemistry. Here, we investigate IO and HOI by mass-selective threshold photoelectron spectroscopy (ms-TPES), using synchrotron radiation. IO and HOI are generated by photolyzing iodine in the presence of ozone. For both molecules, accurate ionization energies are determined, 9.71±0.02 eV for IO and 9.79±0.02 eV for HOI. The strong spin-spin interaction in the 3 Σ- ground state of IO+ leads to an energy splitting into the Ω=0 and Ω=±1 sublevels. Upon ionization, the I-O bond shortens significantly in both molecules; thus, a vibrational progression, assigned to the I-O stretch, is apparent in both spectra.
Collapse
Affiliation(s)
- Domenik Schleier
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Engelbert Reusch
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lisa Lummel
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Ingo Fischer
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
19
|
|
20
|
Hoffmann EH, Tilgner A, Wolke R, Herrmann H. Enhanced Chlorine and Bromine Atom Activation by Hydrolysis of Halogen Nitrates from Marine Aerosols at Polluted Coastal Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:771-778. [PMID: 30557005 DOI: 10.1021/acs.est.8b05165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Detailed multiphase chemistry box model studies are carried out, investigating halogen radical activation at polluted coastal areas. Simulations are performed for a nonpermanent cloud and a cloud-free scenario and reveal that ClNO2 photolysis and ICl photolysis are crucial for gas-phase Cl atom activation. In the cloud scenario, the integrated ClNO2 and ICl photolysis rates are 3.7 × 107 and 3.1 × 107 molecules cm-3 s-1. In the cloud-free scenario, the integrated ClNO2 and ICl photolysis rates are 8.1 × 107 and 3.6 × 107 molecules cm-3 s-1. The simulations show larger contributions of ClNO2 photolysis in the morning and higher ones of ICl photolysis during afternoon. Throughout the simulation, average contributions to Cl atom activation in the cloud and cloud-free scenarios by ClNO2 photolysis are 42% and 62% and by ICl photolysis 35% and 28%, respectively. ICl is formed through an aqueous-phase reaction of HOI with chloride. Two thirds of the formed ICl is released into the gas phase. The residual third reacts with bromide, creating IBr. Overall, the simulations emphasize the crucial role of INO3 hydrolysis for Cl and Br atom activation in polluted coastal areas. Therefore, it needs to be considered in chemical transport models to improve air quality predictions.
Collapse
Affiliation(s)
- Erik H Hoffmann
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| | - Ralf Wolke
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| |
Collapse
|
21
|
Bouchafra Y, Shee A, Réal F, Vallet V, Severo Pereira Gomes A. Predictive Simulations of Ionization Energies of Solvated Halide Ions with Relativistic Embedded Equation of Motion Coupled Cluster Theory. PHYSICAL REVIEW LETTERS 2018; 121:266001. [PMID: 30636145 DOI: 10.1103/physrevlett.121.266001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 06/09/2023]
Abstract
A subsystem approach for obtaining electron binding energies in the valence region is presented and applied to the case of halide ions (X^{-},X=F-At) in water. This approach is based on electronic structure calculations combining the relativistic equation-of-motion coupled cluster method for electron detachment and density functional theory via the frozen density embedding approach, using structures from classical molecular dynamics with polarizable force fields for discrete systems (in our study, droplets containing the anion and 50 water molecules). Our results indicate that one can accurately capture both the large solvent effect observed for the halides and the splitting of their ionization signals due to the increasingly large spin-orbit coupling of the p_{3/2}-p_{1/2} manifold across the series, at an affordable computational cost. Furthermore, owing to the quantum mechanical treatment of both solute and solvent electron binding energies of semiquantitative quality are also obtained for (bulk) water as by-products of the calculations for the halogens (in droplets).
Collapse
Affiliation(s)
- Yassine Bouchafra
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Avijit Shee
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Florent Réal
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
22
|
Kumar M, Saiz-Lopez A, Francisco JS. Single-Molecule Catalysis Revealed: Elucidating the Mechanistic Framework for the Formation and Growth of Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous Surface Environments. J Am Chem Soc 2018; 140:14704-14716. [PMID: 30338993 DOI: 10.1021/jacs.8b07441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iodine oxide aerosols are ubiquitous in many coastal atmospheric environments. However, the exact mechanism responsible for their homogeneous nucleation and subsequent cluster growth remains to be fully established. Using quantum chemical calculations, we propose a new mechanistic framework for the formation and subsequent growth of iodine oxide aerosols, which takes advantage of noncovalent interactions between iodine oxides (I2O5 and I2O4) and iodine acids (HIO3 and HIO2). Larger iodine oxide clusters are suggested to be formed in a facile manner and with enhanced exothermicity. The newly proposed mechanisms follow both concerted and stepwise pathways. In all these new chemistries, an O:I ratio of 2-2.5 is predicted, which satisfies an experimentally derived criterion recently proposed for identifying iodine oxides involved in atmospheric aerosol formation. Born-Oppenheimer molecular dynamics simulations at the air-water interface suggest that I2O5 and I4O10, which are two of the most common nucleating iodine oxides, react with interfacial water on the picosecond time scale and result in novel nucleating species such as H2I2O6 and HI4O11- or I3O8. An important implication of these simulation results is that aqueous surfaces, which are ubiquitous in the atmosphere, may activate iodine oxides to result in a new class of nucleating compounds, which can form mixed aerosol particles with potent precursors, such as HIO3 or H2SO4, in marine air masses via typical acid-based interactions. Overall, these results give a better understanding of iodine-rich aerosols in diverse environments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Department of Earth and Environmental Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate , Institute of Physical Chemistry Rocasolano , CSIC, Madrid , Spain , 28006
| | - Joseph S Francisco
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Department of Earth and Environmental Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
23
|
Shee A, Saue T, Visscher L, Severo Pereira Gomes A. Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states. J Chem Phys 2018; 149:174113. [DOI: 10.1063/1.5053846] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109-1055, USA
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS—Université Toulouse III–Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
24
|
Schmitz G, Noszticzius Z, Hollo G, Wittmann M, Furrow SD. Reactions of iodate with iodine in concentrated sulfuric acid. Formation of I(+3) and I(+1) compounds. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Wei N, Hu C, Zhou S, Ma Q, Mikuška P, Večeřa Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L. VUV photoionization aerosol mass spectrometric study on the iodine oxide particles formed from O 3-initiated photooxidation of diiodomethane (CH 2I 2). RSC Adv 2017. [DOI: 10.1039/c7ra11413c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IOPs formed from O3-initiated photooxidation of CH2I2 were investigated based on the combination of a thermal desorption/tunable vacuum ultraviolet time-of-flight photoionization aerosol mass spectrometer with a flow reactor for the first time.
Collapse
|
26
|
|
27
|
Khanniche S, Louis F, Cantrel L, Černušák I. A Density Functional Theory and ab Initio Investigation of the Oxidation Reaction of CO by IO Radicals. J Phys Chem A 2016; 120:1737-49. [PMID: 26908233 DOI: 10.1021/acs.jpca.6b00047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To get an insight into the possible reactivity between iodine oxides and CO, a first step was to study the thermochemical properties and kinetic parameters of the reaction between IO and CO using theoretical chemistry tools. All stationary points involved were optimized using the Becke's three-parameter hybrid exchange functional coupled with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) and the Møller-Plesset second-order perturbation theory (MP2). Single-point energy calculations were performed using the coupled cluster theory with the iterative inclusion of singles and doubles and the perturbative estimation for triple excitations (CCSD(T)) and the aug-cc-pVnZ (n = T, Q, and 5) basis sets on geometries previously optimized at the aug-cc-pVTZ level. The energetics was then recalculated using the one-component DK-CCSD(T) approach with the relativistic ANO basis sets. The spin-orbit coupling for the iodine containing species was calculated a posteriori using the restricted active space state interaction method in conjunction with the multiconfigurational perturbation theory (CASPT2/RASSI) employing the complete active space (CASSCF) wave function as the reference. The CCSD(T) energies were also corrected for BSSE for molecular complexes and refined with the extrapolation to CBS limit while the DK-CCSD(T) values were refined with the extrapolation to FCI. The exploration of the potential energy surface revealed a two-steps mechanism with a trans and a cis pathway. The rate constants for the direct and complex mechanism were computed as a function of temperature (250-2500 K) using the canonical transition state theory. The three-parameter Arrhenius expressions obtained for the direct and indirect mechanism at the DK-CCSD(T)-cf level of theory is 1.49 × 10(-17) × T(1.77) exp(-47.4 (kJ mol(-1))/RT).
Collapse
Affiliation(s)
- Sarah Khanniche
- University Lille, CNRS, UMR 8522-PC2A, PhysicoChimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.,Laboratoire de Recherche Commun IRSN-CNRS-Lille1 "Cinétique Chimique, Combustion, Réactivité″ (C3R), Cadarache, St Paul Lez Durance, 13115, France
| | - Florent Louis
- University Lille, CNRS, UMR 8522-PC2A, PhysicoChimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.,Laboratoire de Recherche Commun IRSN-CNRS-Lille1 "Cinétique Chimique, Combustion, Réactivité″ (C3R), Cadarache, St Paul Lez Durance, 13115, France
| | - Laurent Cantrel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, Cadarache, St Paul Lez Durance, 13115, France.,Laboratoire de Recherche Commun IRSN-CNRS-Lille1 "Cinétique Chimique, Combustion, Réactivité″ (C3R), Cadarache, St Paul Lez Durance, 13115, France
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava , Mlynská dolina CH1, 84215 Bratislava, Slovakia
| |
Collapse
|
28
|
Sorribas M, Adame JA, Olmo FJ, Vilaplana JM, Gil-Ojeda M, Alados-Arboledas L. A long-term study of new particle formation in a coastal environment: meteorology, gas phase and solar radiation implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:723-737. [PMID: 25618818 DOI: 10.1016/j.scitotenv.2014.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
New particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O3, SO2, CO and NO2) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analysed. The mean duration was 9.2±4.2 h. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2±1.7 cm(-3) s(-1), with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8±2.4 nm h(-1) with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM10 and condensation sink, showed a moderate or high connection with both formation and growth rates.
Collapse
Affiliation(s)
- M Sorribas
- Department of Applied Physics, University of Granada, Granada, 18071, Spain; Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006, Spain.
| | - J A Adame
- 'El Arenosillo' - Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130, Spain
| | - F J Olmo
- Department of Applied Physics, University of Granada, Granada, 18071, Spain; Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006, Spain
| | - J M Vilaplana
- 'El Arenosillo' - Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130, Spain
| | - M Gil-Ojeda
- 'El Arenosillo' - Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Mazagón, Huelva, 21130, Spain
| | - L Alados-Arboledas
- Department of Applied Physics, University of Granada, Granada, 18071, Spain; Andalusian Institute for Earth System Research (IISTA), University of Granada, 18006, Spain
| |
Collapse
|
29
|
Gálvez O, Gómez Martín JC, Gómez PC, Saiz-Lopez A, Pacios LF. A theoretical study on the formation of iodine oxide aggregates and monohydrates. Phys Chem Chem Phys 2013; 15:15572-83. [DOI: 10.1039/c3cp51219c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|