1
|
Lunardi VB, Cheng KC, Lin SP, Angkawijaya AE, Go AW, Soetaredjo FE, Ismadji S, Hsu HY, Hsieh CW, Santoso SP. Modification of cellulosic adsorbent via iron-based metal phenolic networks coating for efficient removal of chromium ion. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132973. [PMID: 37976845 DOI: 10.1016/j.jhazmat.2023.132973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Surface modification of durian rind cellulose (DCell) was done by utilizing the strong coordination effect of polyphenol-based metal phenolic networks (MPNs). MPNs from Fe(III)-tannic acid (FTN) and Fe(III)-gallic acid (FGN) were coated on DCell via a self-assembly reaction at pH 8, resulting in adsorbent composites of FTN@DCell and FGN@DCell for removal of Cr(VI). Batch adsorption experiments revealed that FTN coating resulted in an adsorbent composite with higher adsorption capacity than FGN coating, owing to the greater number of additional adsorption sites from phenolic hydroxyl groups of tannic acid. FTN@DCell exhibits an equilibrium adsorption capacity at 30°C of 110.9 mg/g for Cr(VI), significantly higher than FGN@DCell (73.63 mg/g); the adsorption capacity was increased at higher temperature (i.e., 155.8 and 116.8 mg/g at 50°C for FTN@DCell and FGN@DCell, respectively). Effects of pH, adsorbent dose, initial concentration, and coexisting ions on Cr(VI) removal were investigated. The kinetics fractal-based model Brouers-Sotolongo indicates the 1st and 2nd order reaction for Cr(VI) adsorption on FTN@DCell and FGN@DCell, respectively. The isotherm data can be described with a fractal-based model, which implies the heterogeneous nature of the adsorbent surface sites. The Cr(VI) adsorption via surface complexation with phenolic hydroxyl groups was confirmed by evaluating the functional groups shifting. FGN@DCell and FTN@DCell were found to have good reusability, maintaining over 50 % of their adsorption efficiency after four adsorption-desorption cycles. Environmental assessment with Arabidopsis thaliana demonstrated their potential in eliminating the Cr(VI) phytotoxic effect. Thus, this study has shown the efficient and economical conversion of durian waste into environmentally benign adsorbent for heavy metal treatment.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Graduate Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | | | - Alchris Woo Go
- Chemical Engineering Department, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei 10607, Taiwan
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 518057, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, Hong Kong, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
2
|
Karoui S, Ben Arfi R, Fernández-Sanjurjo MJ, Nuñez-Delgado A, Ghorbal A, Álvarez-Rodríguez E. Optimization of synergistic biosorption of oxytetracycline and cadmium from binary mixtures on reed-based beads: modeling study using Brouers-Sotolongo models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46431-46447. [PMID: 32535823 DOI: 10.1007/s11356-020-09493-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The first aim of this study was to synthesize and characterize reed-based-beads (BBR), an enhanced adsorbent from Tunisian reed. The second purpose was to evaluate and optimize the BBR efficiency for the simultaneous removal of oxytetracycline (OTC) and cadmium (Cd(II)), using central composite design under response surface methodology. The third goal was to elucidate the biosorption mechanisms taking place. It was shown that under optimum conditions (4.19 g L-1 of BBR, 165.54 μmol L-1 of OTC, 362.16 μmol L-1 of Cd(II), pH of 6, and 25.14-h contact time) the highest adsorption percentages (63.66% for OTC and 99.99% for Cd(II)) were obtained. It was revealed that OTC adsorption mechanism was better described by Brouers-Sotolongo fractal equation, with regression coefficient (R2) of 0.99876, and a Person's chi-square (χ2) of 0.01132. The Weibull kinetic equation better explained Cd(II) biosorption (R2 = 0.99959 and χ2 = 0.00194). FTIR and isotherm studies confirmed that the BBR surface was heterogeneous, and that adsorption mechanisms were better described by the Freundlich/Jovanovich equation (R2 = 0.99276 and χ2 = 0.04864) for OTC adsorption, and by the Brouers-Sotolongo model (R2 = 0.9851 and χ2 = 0.77547) for Cd(II) biosorption. Overall results indicate that, at last, the BBR lignocellulosic biocomposite beads could be considered as cost-effective and efficient adsorbent, which could be of socioeconomic and environmental relevance. Graphical abstract.
Collapse
Affiliation(s)
- Sarra Karoui
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia.
- National Engineering School of Sfax, University of Sfax, 3029, Sfax, Tunisia.
| | - Rim Ben Arfi
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Galicia, Spain
| | - Avelino Nuñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Galicia, Spain
| | - Achraf Ghorbal
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Galicia, Spain
| |
Collapse
|
3
|
Gallifuoco A, Papa AA, Taglieri L. Modeling biomass hydrothermal carbonization by the maximum information entropy criterion. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00002k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of biomass hydrothermal carbonization is modeled by the MaxEnt principle, without assuming a reaction network. Modeling is in good accordance with the experimental data concerning a broad range of biomass and reaction conditions.
Collapse
Affiliation(s)
- Alberto Gallifuoco
- University of L'Aquila
- Department of Industrial and Information Engineering & Economics
- Italy
| | | | - Luca Taglieri
- University of L'Aquila
- Department of Industrial and Information Engineering & Economics
- Italy
| |
Collapse
|
4
|
Selmi T, Seffen M, Celzard A, Fierro V. Effect of the adsorption pH and temperature on the parameters of the Brouers-Sotolongo models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23437-23446. [PMID: 30560528 DOI: 10.1007/s11356-018-3835-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
The goal of the present paper was to elucidate if-and how-the parameters of the Brouers-Sotolongo fractal (BSf) (n,α) kinetic model (α and τC) on the one hand, and of the generalised Brouers-Sotolongo (GBS) isotherm model (a and b) on the other hand, are correlated with adsorption pH and temperature. For that purpose, adsorption of aqueous solutions of two common dyes, methylene blue (MB) and methyl orange (MO) was carried out on four activated carbons (ACs) at three temperatures (25, 35 and 50 °C) and three pH (2.5, 5 and 8). Adsorption kinetics and isotherms were measured, and the corresponding curves were best fitted with specific forms of the aforementioned models, and corresponding to equations known as BSf (1,α) kinetic and Brouers-Gaspard isotherm models. Correlations between all model parameters and adsorption conditions were found, bringing some information about the adsorbate-adsorbent interaction.
Collapse
Affiliation(s)
- Taher Selmi
- Laboratory of Energy and Materials (LabEM), Higher School of Science and Technology of Hammam Sousse, BP 4011 Hammam Sousse (Sousse University-Tunisia), Sousse, Tunisia.
| | - Mongi Seffen
- Laboratory of Energy and Materials (LabEM), Higher School of Science and Technology of Hammam Sousse, BP 4011 Hammam Sousse (Sousse University-Tunisia), Sousse, Tunisia
| | - Alain Celzard
- UMR CNRS 7198, Institut Jean Lamour, 27 Rue Philippe Séguin, BP 21042, 88051, Epinal Cedex 9, France
| | - Vanessa Fierro
- UMR CNRS 7198, Institut Jean Lamour, 27 Rue Philippe Séguin, BP 21042, 88051, Epinal Cedex 9, France
| |
Collapse
|
7
|
Al-Musawi TJ, Brouers F, Zarrabi M. Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers-Sotolongo fractal equation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4048-4057. [PMID: 27928752 DOI: 10.1007/s11356-016-8182-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
In this study, the kinetic data of the adsorption of two antibiotics onto three nanoadsorbents was modeled using the Brouers-Sotolongo fractal model. The model parameters were calculated at different initial antibiotic concentrations using various approximations of the kinetic equation for two quantities of practical relevance: the sorption power and the half-time characteristic of the sorption. The merits of the nanomaterial were then compared in terms of their application in the elimination of dangerous antibiotic wastes. We also developed a formula to calculate the effective rate of the best adsorbent. This study presents the modeling method in detail and has a pedagogical value for similar researches.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Faculty of Engineering, Department of Civil Engineering, Isra University, Amman, Jordan
| | - Francois Brouers
- Department of Chemical Engineering, Liège University, Liège, Belgium
| | - Mansur Zarrabi
- Department of Environmental Health Engineering, Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, P.O. Box No: 31485/561, Alborz, Karaj, Iran.
| |
Collapse
|