1
|
Yang C, Idriss H, Wang Y, Wöll C. Surface Structure and Chemistry of CeO 2 Powder Catalysts Determined by Surface-Ligand Infrared Spectroscopy (SLIR). Acc Chem Res 2024; 57:3316-3326. [PMID: 39476853 PMCID: PMC11580167 DOI: 10.1021/acs.accounts.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/20/2024]
Abstract
ConspectusCerium is the most abundant rare earth element in the Earth's crust. Its most stable oxide, cerium dioxide (CeO2, ceria), is increasingly utilized in the field of catalysis. It can catalyze redox and acid-base reactions, and serve as a component of electrocatalysts and even photocatalysts. As one of the most commonly used in situ/operando characterization methods in catalysis, infrared (IR) spectroscopy is routinely employed to monitor reaction intermediates on the surface of solid catalysts, offering profound insight into reaction mechanisms. Additionally, IR vibrational frequencies of probe molecules adsorbed on solid catalysts provide detailed information about their structure and chemical states. Numerous studies in the literature have utilized carbon monoxide and methanol as IR probe molecules on ceria particles. However, assigning their vibrational frequencies is often highly controversial due to the great complexity of the actual surface of ceria particles, which include differently oriented crystal facets, reconstructions, defects, and other structural variations. In our laboratory, taking bulk ceria single crystals with distinct orientations as model systems, we employed a highly sensitive ultrahigh vacuum (UHV) infrared spectroscopy system (THEO) to study the adsorption of CO and methanol. It turns out that the theoretical calculations adopting hybrid functionals (HSE06) can bring the theoretical predictions into agreement with the experimental results for the CO frequencies on ceria single crystal surfaces. The obtained frequencies serve as reliable references to resolve the long-standing controversial assignments for the IR bands of CO and methanol adsorbed on ceria particles. Furthermore, these characteristic frequencies allow for the determination of orientations, oxidation states and restructuring of exposed crystal facets of ceria nanoparticles, which is applicable from UHV conditions to industrially relevant pressures of up to 1 bar, and from low temperatures (∼65 K) to high temperatures (∼1000 K). We also used molecular oxygen as a probe molecule to investigate its interaction with the ceria surface, crucial for understanding ceria's redox properties. Our findings reveal that the localization of oxygen vacancies and the mechanism of dioxygen activation are highly sensitive to surface orientations. We provided the first spectroscopic evidence showing that the oxygen vacancies on ceria (111) surfaces tend to localize in deep layers. In addition, we employed N2O as a probe molecule to elucidate the origin of the photocatalytic activity of ceria and showed that the photocatalytic activity is highly sensitive to the surface orientation (i.e., surface coordination structure). This Account shows that probe-molecule infrared spectroscopy serves as a powerful in situ/operando tool for studying the surface structure and chemistry of solid catalysts, and the knowledge gained through the "Surface Science" approach is essential as a crucial benchmark.
Collapse
Affiliation(s)
- Chengwu Yang
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Hicham Idriss
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Yuemin Wang
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Christof Wöll
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
2
|
Tu Y, Huang L, Cheng X, Tian B, Zhang D, Hu J, Ding H, Xu Q, Ye Y, Zhu J. Modulating Nanoparticle Structure by Metal-Metal Oxide Interfacial Interaction in a CeO 2-Supported Bimetallic System: The Ni-Cu Case. J Phys Chem Lett 2024; 15:4096-4104. [PMID: 38587484 DOI: 10.1021/acs.jpclett.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Structure-optimized bimetallic and multicomponent catalysts often outperform single-component catalysts, inspiring a detailed investigation of metal-metal and metal-support interactions in the system. We investigated the geometric and electronic structures of ceria-supported Ni-Cu particles prepared using different metal deposition sequences employing a combination of X-ray photoelectron spectroscopy, resonant photoemission spectroscopy, and infrared reflection absorption spectroscopy. The bimetallic model catalyst structure was altered by a distinct surface evolution process determined by the metal deposition sequence. The postdeposited Cu stays on the surface of Ni predeposited CeO2 and forms only a limited Ni-Cu alloy in the Cu-contacted Ni region. However, when Ni is deposited on the Cu predeposited CeO2 surface, Ni can migrate through the Cu layer to the Cu-ceria interface and form an extended Ni-Cu alloy to the whole deposited metal layer on the ceria surface. The dynamic metal diffusion in the CeO2-supported Ni-Cu system indicates that metal-support interactions can be used to achieve the rational design of a bimetallic composition distribution during catalyst preparation.
Collapse
Affiliation(s)
- Yi Tu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Luchao Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Bingchu Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Dongling Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
3
|
Investigation of Cu-doped ceria through a combined spectroscopic approach: involvement of different catalytic sites in CO oxidation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Abstract
The preferential CO oxidation (so-called CO-PROX) is the selective CO oxidation amid H2-rich atmospheres, a process where ceria-based materials are consolidated catalysts. This article aims to disentangle the potential CO–H2 synergism under CO-PROX conditions on the low-index ceria surfaces (111), (110) and (100). Polycrystalline ceria, nanorods and ceria nanocubes were prepared to assess the physicochemical features of the targeted surfaces. Diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) shows that ceria surfaces are strongly carbonated even at room temperature by the effect of CO, with their depletion related to the CO oxidation onset. Conversely, formate species formed upon OH + CO interaction appear at temperatures around 60 °C and remain adsorbed regardless the reaction degree, indicating that these species do not take part in the CO oxidation. Density functional theory calculations (DFT) reveal that ceria facets exhibit high OH coverages all along the CO-PROX reaction, whilst CO is only chemisorbed on the (110) termination. A CO oxidation mechanism that explains the early formation of carbonates on ceria and the effect of the OH coverage in the overall catalytic cycle is proposed. In short, hydroxyl groups induce surface defects on ceria that increase the COx–catalyst interaction, revealed by the CO adsorption energies and the stabilization of intermediates and readsorbed products. In addition, high OH coverages are shown to facilitate the hydrogen transfer to form less stable HCOx products, which, in the case of the (110) and (100), is key to prevent surface poisoning. Altogether, this work sheds light on the yet unclear CO–H2 interactions on ceria surfaces during CO-PROX reaction, providing valuable insights to guide the design of more efficient reactors and catalysts for this process.
Collapse
|
5
|
Zhao Y, Jalal A, Uzun A. Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuxin Zhao
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ahsan Jalal
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
6
|
Pitman CL, Pennington AM, Brintlinger TH, Barlow DE, Esparraguera LF, Stroud RM, Pietron JJ, DeSario PA, Rolison DR. Stabilization of reduced copper on ceria aerogels for CO oxidation. NANOSCALE ADVANCES 2020; 2:4547-4556. [PMID: 36132898 PMCID: PMC9419587 DOI: 10.1039/d0na00594k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 05/06/2023]
Abstract
Photodeposition of Cu nanoparticles on ceria (CeO2) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical factor in retaining stable Cu0. At higher Cu weight loadings or with a lower support surface area, Cu aggregation is observed by scanning and transmission electron microscopy. Analysis of Cu/CeO2 using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy finds a mixture of Cu2+, Cu+, and Cu0, with Cu+ at the surface. At 5 wt% Cu, Cu/CeO2 aerogels exhibit high activity for heterogeneous CO oxidation catalysis at low temperatures (94% conversion of CO at 150 °C), substantially out-performing Cu/TiO2 aerogel catalysts featuring the same weight loading of Cu on TiO2 (20% conversion of CO at 150 °C). The present study demonstrates an extension of our previous concept of stabilizing catalytic Cu nanoparticles in low oxidation states on reducing, high surface area aerogel supports. Changing the reducing power of the support modulates the catalytic activity of mixed-valent Cu nanoparticles and metal oxide support.
Collapse
Affiliation(s)
- Catherine L Pitman
- NRL/NRC Postdoctoral Associate, U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Ashley M Pennington
- NRL/NRC Postdoctoral Associate, U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Todd H Brintlinger
- Materials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Daniel E Barlow
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Liam F Esparraguera
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Rhonda M Stroud
- Materials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Jeremy J Pietron
- Former Employee, Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Paul A DeSario
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| | - Debra R Rolison
- Chemistry Division (Code 6100), U.S. Naval Research Laboratory Washington D.C. 20375 USA
| |
Collapse
|
7
|
Abstract
In this study, we demonstrate the preparation and characterization of small palladium nanoparticles (Pd NPs) on modified ceria support (Pd/CeO2) using wet impregnation and further reduction in an H2/Ar flow. The obtained particles had a good dispersion, but their small size made it difficult to analyze them by conventional techniques such as transmission electron microscopy (TEM) and X-ray powder diffraction (XRPD). The material demonstrated a high catalytic activity in the CO oxidation reaction: the 100% of CO conversion was achieved at ~50 °C, whereas for most of the cited literature, such a high conversion usually was observed near 100 °C or higher for Pd NPs. Diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy in combination with CO probe molecules was used to investigate the size and morphology of NPs and the ceria support. On the basis of the area ratio under the peaks attributed to bridged (B) and linear (L) carbonyls, high-dispersion Pd NPs was corroborated. Obtained results were in good agreement with data of X-ray absorption near edge structure analysis (XANES) and CO chemisorption measurements.
Collapse
|
8
|
An H, Ha H, Yoo M, Kim HY. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd) 147 bimetallic nanoparticles. NANOSCALE 2017; 9:12077-12086. [PMID: 28799609 DOI: 10.1039/c7nr04435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When the elements that compose bimetallic catalysts interact asymmetrically with reaction feedstock, the surface concentration of the bimetallic catalysts and the morphology of the reaction center evolve dynamically as a function of environmental factors such as the partial pressure of the triggering molecule. Relevant experimental and theoretical findings of the dynamic structural evolution of bimetallic catalysts under the reaction conditions are emerging, thus enabling the design of more consistent, reliable, and efficient bimetallic catalysts. In an initial attempt to provide an atomic-level understanding of the adsorption-induced structural evolution of bimetallic nanoparticles (NPs) under CO oxidation conditions, we used density functional theory to study the details of CO-adsorption-driven Pd surface segregation in (AuPd)147 bimetallic NPs. The strong CO affinity of Pd provides a driving force for Pd surface segregation. We found that the vertex site of the NP becomes a gateway for the initial Pd-Au swapping and the subsequent formation of an internal vacancy. This self-generated internal vacancy easily diffuses inside the NP and activates Pd-Au swapping pathways in the (100) NP facet. Our results reveal how the surface and internal concentrations of bimetallic NPs respond immediately to changes in the reaction conditions. Our findings should aid in the rational design of highly active and versatile bimetallic catalysts by considering the environmental factors that systematically affect the structure of bimetallic catalysts under the reaction conditions.
Collapse
Affiliation(s)
- Hyesung An
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | | | | | | |
Collapse
|
9
|
Wang Y, Wöll C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem Soc Rev 2017; 46:1875-1932. [DOI: 10.1039/c6cs00914j] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we highlight recent progress (2008–2016) in infrared reflection absorption spectroscopy (IRRAS) studies on oxide powders achieved by using different types of metal oxide single crystals as reference systems.
Collapse
Affiliation(s)
- Yuemin Wang
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology
- Eggenstein-Leopoldshafen
- Germany
| | - Christof Wöll
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology
- Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
10
|
Mudiyanselage K, Luo S, Kim HY, Yang X, Baber AE, Hoffmann FM, Senanayake S, Rodriguez JA, Chen JG, Liu P, Stacchiola DJ. How to stabilize highly active Cu+ cations in a mixed-oxide catalyst. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Mudiyanselage K, Baber AE, Liu Z, Senanayake SD, Stacchiola DJ. Isolation and characterization of formates on CeO –Cu O/Cu(1 1 1). Catal Today 2015. [DOI: 10.1016/j.cattod.2014.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Feng ZA, Machala ML, Chueh WC. Surface electrochemistry of CO2reduction and CO oxidation on Sm-doped CeO2−x: coupling between Ce3+and carbonate adsorbates. Phys Chem Chem Phys 2015; 17:12273-81. [DOI: 10.1039/c5cp00114e] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strong coupling between carbonate coverage, surface Ce3+concentration and overpotential reveals rate-limiting step in CO oxidation and CO2reduction.
Collapse
Affiliation(s)
- Zhuoluo A. Feng
- Department of Applied Physics
- Stanford University
- Stanford
- USA
- Stanford Institute for Materials and Energy Sciences
| | - Michael L. Machala
- Department of Materials Science and Engineering
- Stanford University
- Stanford, CA 94305
- USA
| | - William C. Chueh
- Stanford Institute for Materials and Energy Sciences
- SLAC National Accelerator Laboratory
- Menlo Park
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
13
|
Neitzel A, Lykhach Y, Skála T, Tsud N, Vorokhta M, Mazur D, Prince KC, Matolín V, Libuda J. Surface sites on Pt–CeO2mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study. Phys Chem Chem Phys 2014; 16:24747-54. [DOI: 10.1039/c4cp03346a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Yang C, Yin LL, Bebensee F, Buchholz M, Sezen H, Heissler S, Chen J, Nefedov A, Idriss H, Gong XQ, Wöll C. Chemical activity of oxygen vacancies on ceria: a combined experimental and theoretical study on CeO2(111). Phys Chem Chem Phys 2014; 16:24165-8. [DOI: 10.1039/c4cp02372b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical activity of oxygen vacancies on well-defined, single-crystal CeO2(111)-surfaces is investigated using CO as a probe molecule.
Collapse
Affiliation(s)
- Chengwu Yang
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Li-Li Yin
- Key Laboratory for Advanced Materials
- Centre for Computational Chemistry and Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Fabian Bebensee
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Maria Buchholz
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Hikmet Sezen
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Stefan Heissler
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Jun Chen
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Alexei Nefedov
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| | - Hicham Idriss
- Saudi Basic Industries Corporation (SABIC)
- CRI at KAUST
- , Saudi Arabia
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials
- Centre for Computational Chemistry and Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237, P.R. China
| | - Christof Wöll
- Institut für Funktionelle Grenzflächen
- Karlsruher Institut für Technologie
- 76021 Karlsruhe, Germany
| |
Collapse
|