1
|
Wang W, He Y, He S, Deng L, Wang H, Cao Z, Feng Z, Xiong B, Yin Y. A Brief Review of Aptamer-Based Biosensors in Recent Years. BIOSENSORS 2025; 15:120. [PMID: 39997022 PMCID: PMC11852377 DOI: 10.3390/bios15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Aptamers have recently become novel probes for biosensors because of their good biocompatibility, strong specificity, and high sensitivity. Biosensors based on peptides or nucleic acid aptamers are used in implantable and wearable devices owing to their ease of synthesis and economic efficiency. Simultaneously, amphoteric ionic peptides are being explored as antifouling layers for biosensors resistant to interference from extraneous proteins in serum. Thus, this paper reviews recently developed aptamer-based biosensors and introduces peptide- and nucleic acid-based biosensors, while focusing on the three primary classes of biosensors: electrochemical sensors, fluorescent or colorimetric biosensors, and electroluminescent sensors. Furthermore, we summarize their general construction strategies, describe specific electrochemical sensors that use peptides as an antipollution layer, and elucidate their advantages.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
- Zhongke Jieyun (Beijing) Information Technology Co., Ltd., Beijing 101400, China
| | - Yumin He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suxiang He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410075, China;
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (B.X.)
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Zemeng Feng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (B.X.)
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (W.W.); (Y.H.); (S.H.); (Y.Y.)
| |
Collapse
|
2
|
Wang CH, Jhang YY, Yu SS. Catalytic peptide/hemin complex from ester-amide exchange reaction mediated by deep eutectic solvents. RSC Adv 2025; 15:119-123. [PMID: 39758916 PMCID: PMC11694504 DOI: 10.1039/d4ra08607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids. This strategy leads to peptide mixtures that exhibit hemin-binding capability and peroxidase-like activity.
Collapse
Affiliation(s)
- Cheng-Hsi Wang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Yao-Yu Jhang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
- Core Facility Center, National Cheng Kung University Tainan 70101 Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
3
|
Kurita T, Numata K. The structural and functional impacts of rationally designed cyclic peptides on self-assembly-mediated functionality. Phys Chem Chem Phys 2024; 26:28776-28792. [PMID: 39555904 DOI: 10.1039/d4cp02759k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Compared with their linear counterparts, cyclic peptides, characterized by their unique topologies, offer superior stability and enhanced functionality. In this review article, the rational design of cyclic peptide primary structures and their significant influence on self-assembly processes and functional capabilities are comprehensively reviewed. We emphasize how strategically modifying amino acid sequences and ring sizes critically dictate the formation and properties of peptide nanotubes (PNTs) and complex assemblies, such as rotaxanes. Adjusting the number of amino acid residues and side chains allows researchers to tailor the diameter, surface properties, and functions of PNTs precisely. In addition, we discuss the complex host-guest chemistry of cyclic peptides and their ability to form rotaxanes, highlighting their potential in the development of mechanically interlocked structures with novel functionalities. Moreover, the critical role of computational methods for accurately predicting the solution structures of cyclic peptides is also highlighted, as it enables the design of novel peptides with tailored properties for a range of applications. These insights set the stage for groundbreaking advances in nanotechnology, drug delivery, and materials science, driven by the strategic design of cyclic peptide primary structures.
Collapse
Affiliation(s)
- Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
4
|
Wang Y, Liao Y, Zhang YJ, Wu XH, Qiao ZY, Wang H. Self-Assembled Peptide with Morphological Structure for Bioapplication. Biomacromolecules 2024; 25:6367-6394. [PMID: 39297513 DOI: 10.1021/acs.biomac.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Peptide materials, such as self-assembled peptide materials, are very important biomaterials. Driven by multiple interaction forces, peptide molecules can self-assemble into a variety of different macroscopic forms with different properties and functions. In recent years, the research on self-assembled peptides has made great progress from laboratory design to clinical application. This review focuses on the different morphologies, including nanoparticles, nanovesicles, nanotubes, nanofibers, and others, formed by self-assembled peptide. The mechanisms and applications of the morphology transformation are also discussed in this paper, and the future direction of self-assembled nanomaterials is envisioned.
Collapse
Affiliation(s)
- Yu Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yusi Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| | - Ying-Jin Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Xiu-Hai Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin150081, P. R. China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| |
Collapse
|
5
|
Tsuchiya K, Terada K, Kurita T, Watanabe T, Lamprou A, Numata K. Regiocontrol of the Bulk Polymerization of Lysine Ethyl Ester by the Selection of Suitable Immobilized Enzyme Catalysts. Biomacromolecules 2024; 25:5110-5120. [PMID: 39009036 PMCID: PMC11323002 DOI: 10.1021/acs.biomac.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
The development of a green and facile method for the controlled synthesis of functional polypeptides is desired for sustainable material applications. In this study, the regioselective synthesis of poly(l-lysine) (polyLys) via enzyme-catalyzed aminolysis was achieved by bulk polymerization of l-lysine ethyl ester (Lys-OEt) using immobilized Candida antarctica lipase Novozym 435 (IM-lipase) or trypsin (IM-trypsin). Structural characterization of the obtained polyLys revealed that IM-lipase resulted solely in ε-linked amide bond formation, whereas IM-trypsin predominantly provided α-linked polyLys. Optimization of the conditions for the bulk polymerization using immobilized enzymes resulted in high monomer conversion and a high degree of polymerization, with excellent regioselectivity. Molecular docking simulations revealed different binding conformations of Lys-OEt to the catalytic pockets of lipase and trypsin, which putatively resulted in different amino moieties being used for amide bond formation. The immobilized enzymes were recovered and recycled for bulk polymerization, and the initial activity was maintained in the case of IM-trypsin. The obtained α- and ε-linked polyLys products exhibited different degradability against proteolysis, demonstrating the possibility of versatile applications as sustainable materials. This enzymatic regioregular control enabled the synthesis of well-defined polypeptide-based materials with a diverging structural variety.
Collapse
Affiliation(s)
- Kousuke Tsuchiya
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kayo Terada
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Taichi Kurita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takumi Watanabe
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | - Keiji Numata
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Kurita T, Higashi M, Gimenez-Dejoz J, Fujita S, Uji H, Sato H, Numata K. Synthesis of All-Peptide-Based Rotaxane from a Proline-Containing Cyclic Peptide. Biomacromolecules 2024; 25:3661-3670. [PMID: 38807574 DOI: 10.1021/acs.biomac.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Rotaxane cross-linkers enhance the toughness of the resulting rotaxane cross-linked polymers through a stress dispersion effect, which is attributed to the mobility of the interlocked structure. To date, the compositional diversity of rotaxane cross-linkers has been limited, and the poor compatibility of these cross-linkers with peptides and proteins has made their use in such materials challenging. The synthesis of a rotaxane composed of peptides may result in a biodegradable cross-linker that is compatible with peptides and proteins, allowing the fortification of polypeptides and proteins and ultimately leading to the development of innovative materials that possess excellent mechanical properties and biodegradability. However, the chemical synthesis of all-peptide-based rotaxanes has remained elusive because of the absence of strong binding motifs in peptides, which prevents an axial peptide from penetrating a cyclic peptide. Here, we synthesized all-peptide-based rotaxanes using an active template method for proline-containing cyclic peptides. The results of molecular dynamics simulations suggested that cyclic peptides with an expansive inner cavity and carbonyl oxygens oriented toward the center are favorable for rotaxane synthesis. This rotaxane synthesis method is expected to accelerate the synthesis of peptides and proteins with mechanically interlocked structures, potentially leading to the development of peptide- and protein-based materials with unprecedented functionalities.
Collapse
Affiliation(s)
- Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Life Sciences Department, Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain
| | - Seiya Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirotaka Uji
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyou-ku, Kyoto 606-8103, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
7
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
8
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
9
|
Albini F, Biondi B, Lastella L, Peggion C. Oxime and thiazolidine chemoselective ligation reactions: a green method for cotton functionalization. CELLULOSE (LONDON, ENGLAND) 2023; 30:5573-5587. [PMID: 37304190 PMCID: PMC10193351 DOI: 10.1007/s10570-023-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
During the last years, the need to create textile materials provided with peculiar properties has grown significantly. In particular, new textiles are studied to be a first protection in the prevention of living organisms from pathogens. In this regard, modifying a textile material with biologically active compounds, such as antibacterial or antiviral peptides would be useful for many applications. Our work shows a study on the possibility of modifying cotton fabrics with peptides using thiazolidine and oxime chemoselective ligations. For this purpose, an enzymatic oxidation of cellulose in a heterogeneous phase and the possibility to reuse the oxidation solution for multiple times was successfully applied. Model peptides have been designed and synthesized in order to set up the conditions for conjugating peptides to cotton via either thiazolidine or oxime bond. A systematic study of the time, pH, and quantities needed for the best reaction conditions has been conducted. The efficiency and stability of the two chemoselective ligation bonds have been studied and compared. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10570-023-05253-1.
Collapse
Affiliation(s)
- Francesca Albini
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR - Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Luana Lastella
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Cristina Peggion
- Department of Chemistry, University of Padova, 35131 Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR - Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
10
|
Dey A, Haldar U, Tota R, Faust R, De P. PIB-based block copolymer with a segment having alternating sequence of leucine and alanine side-chain pendants. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ujjal Haldar
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rajasekhar Tota
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rudolf Faust
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
11
|
Zhang K, Li R, Chen X, Yan H, Li H, Zhao X, Huang H, Chen S, Liu Y, Wang K, Han Z, Han Z, Kong D, Chen X, Li Z. Renal Endothelial Cell-Targeted Extracellular Vesicles Protect the Kidney from Ischemic Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204626. [PMID: 36416304 PMCID: PMC9875634 DOI: 10.1002/advs.202204626] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Indexed: 05/02/2023]
Abstract
Endothelial cell injury plays a critical part in ischemic acute kidney injury (AKI) and participates in the progression of AKI. Targeting renal endothelial cell therapy may ameliorate vascular injury and further improve the prognosis of ischemic AKI. Here, P-selectin as a biomarker of ischemic AKI in endothelial cells is identified and P-selectin binding peptide (PBP)-engineered extracellular vesicles (PBP-EVs) with imaging and therapeutic functions are developed. The results show that PBP-EVs exhibit a selective targeting tendency to injured kidneys, while providing spatiotemporal information for the early diagnosis of AKI by quantifying the expression of P-selectin in the kidneys by molecular imaging. Meanwhile, PBP-EVs reveal superior nephroprotective functions in the promotion of renal repair and inhibition of fibrosis by alleviating inflammatory infiltration, improving reparative angiogenesis, and ameliorating maladaptive repair of the renal parenchyma. In conclusion, PBP-EVs, as an ischemic AKI theranostic system that is designed in this study, provide a spatiotemporal diagnosis in the early stages of AKI to help guide personalized therapy and exhibit superior nephroprotective effects, offering proof-of-concept data to design EV-based theranostic strategies to promote renal recovery and further improve long-term outcomes following AKI.
Collapse
Affiliation(s)
- Kaiyue Zhang
- School of MedicineNankai UniversityTianjin300071China
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Rongrong Li
- School of MedicineNankai UniversityTianjin300071China
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xiaoniao Chen
- Beijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijing100853China
| | - Hongyu Yan
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Huifang Li
- School of MedicineNankai UniversityTianjin300071China
| | - Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityXinxiangHenan453003China
| | - Haoyan Huang
- School of MedicineNankai UniversityTianjin300071China
| | - Shang Chen
- School of MedicineNankai UniversityTianjin300071China
| | - Yue Liu
- School of MedicineNankai UniversityTianjin300071China
| | - Kai Wang
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem CellShangraoJiangxi334000China
- Tianjin Key Laboratory of Engineering Technologies for Cell PharmaceuticalNational Engineering Research Center of Cell ProductsAmCellGene Co., LtdTianjin300457China
| | - Zhong‐Chao Han
- Jiangxi Engineering Research Center for Stem CellShangraoJiangxi334000China
- Tianjin Key Laboratory of Engineering Technologies for Cell PharmaceuticalNational Engineering Research Center of Cell ProductsAmCellGene Co., LtdTianjin300457China
- Beijing Engineering Laboratory of Perinatal Stem CellsBeijing Institute of Health and Stem CellsHealth & Biotech CoBeijing100176China
| | - Deling Kong
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xiang‐Mei Chen
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijing100853China
| | - Zongjin Li
- School of MedicineNankai UniversityTianjin300071China
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijing100853China
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityXinxiangHenan453003China
- Tianjin Key Laboratory of Human Development and Reproductive RegulationTianjin Central Hospital of Gynecology ObstetricsNankai University Affiliated Hospital of Obstetrics and GynecologyTianjin300100China
| |
Collapse
|
12
|
Xu Y, Chen H, Song ZL, Fan GC, Luo X. Integrating a zwitterionic peptide with a two-photoelectrode system for an advanced photoelectrochemical immunosensing platform. Chem Commun (Camb) 2022; 59:63-66. [PMID: 36448516 DOI: 10.1039/d2cc05721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An ingenious strategy with the integration of a zwitterionic peptide into a two-photoelectrode system was reported to construct an advanced photoelectrochemical immunosensing platform. The strategy has endowed the platform with both excellent photoelectric properties and an antifouling ability, and was capable of accurate and sensitive detection of target biomarkers in biological specimens.
Collapse
Affiliation(s)
- Yaqun Xu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Huimin Chen
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Ling Song
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiliang Luo
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
13
|
Terada K, Kurita T, Gimenez-Dejoz J, Masunaga H, Tsuchiya K, Numata K. Papain-Catalyzed, Sequence-Dependent Polymerization Yields Polypeptides Containing Periodic Histidine Residues. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kayo Terada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-C1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-C1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Liang Y, Furukawa H, Sakamoto K, Inaba H, Matsuura K. Anticancer Activity of Reconstituted Ribonuclease S-Decorated Artificial Viral Capsid. Chembiochem 2022; 23:e202200220. [PMID: 35676201 PMCID: PMC9400862 DOI: 10.1002/cbic.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the β-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.
Collapse
Affiliation(s)
- Yingbing Liang
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroto Furukawa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kentarou Sakamoto
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Hiroshi Inaba
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| | - Kazunori Matsuura
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
- Centre for Research on Green Sustainable ChemistryTottori UniversityKoyama-Minami 4–101Tottori680-8552Japan
| |
Collapse
|
15
|
Chen M, Han R, Li Y, Luo X. Nonfouling and ratiometric electrochemical detection of prostate specific antigen in whole serum. Anal Chim Acta 2022; 1224:340191. [DOI: 10.1016/j.aca.2022.340191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
|
16
|
Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules 2022; 27:molecules27134115. [PMID: 35807362 PMCID: PMC9267992 DOI: 10.3390/molecules27134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.
Collapse
|
17
|
Rapid syntheses of N-fused heterocycles via acyl-transfer in heteroaryl ketones. Nat Commun 2022; 13:3337. [PMID: 35680930 PMCID: PMC9184603 DOI: 10.1038/s41467-022-31063-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
The wide-ranging potencies of bioactive N-fused heterocycles inspire the development of synthetic transformations that simplify preparation of their complex, diverse structural motifs. Heteroaryl ketones are ubiquitous, readily available, and inexpensive molecular scaffolds, and are thus synthetically appealing as precursors in preparing N-fused heterocycles via intramolecular acyl-transfer. To best of our knowledge, acyl-transfer of unstrained heteroaryl ketones remains to be demonstrated. Here, we show an acyl transfer-annulation to convert heteroaryl ketones to N-fused heterocycles. Driven via aromatisation, the acyl of a heteroaryl ketone can be transferred from the carbon to the nitrogen of the corresponding heterocycle. The reaction commences with the spiroannulation of a heteroaryl ketone and an alkyl bromide, with the resulting spirocyclic intermediate undergoing aromatisation-driven intramolecular acyl transfer. The reaction conditions are optimised, with the reaction exhibiting a broad substrate scope in terms of the ketone and alkyl bromide. The utility of this protocol is further demonstrated via application to complex natural products and drug derivatives to yield heavily functionalised N-fused heterocycles. Heteroaryl ketones are ubiquitous molecular scaffolds but seldom used as synthetic precusors. Here, the authors develop an acyl transfer-annulation to convert heteroaryl ketones to N-fused heterocycles, which are prevalent in bioactive molecules.
Collapse
|
18
|
Gatto E, Toniolo C, Venanzi M. Peptide Self-Assembled Nanostructures: From Models to Therapeutic Peptides. NANOMATERIALS 2022; 12:nano12030466. [PMID: 35159810 PMCID: PMC8838750 DOI: 10.3390/nano12030466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
Self-assembly is the most suitable approach to obtaining peptide-based materials on the nano- and mesoscopic scales. Applications span from peptide drugs for personalized therapy to light harvesting and electron conductive media for solar energy production and bioelectronics, respectively. In this study, we will discuss the self-assembly of selected model and bioactive peptides, in particular reviewing our recent work on the formation of peptide architectures of nano- and mesoscopic size in solution and on solid substrates. The hierarchical and cooperative characters of peptide self-assembly will be highlighted, focusing on the structural and dynamical properties of the peptide building blocks and on the nature of the intermolecular interactions driving the aggregation phenomena in a given environment. These results will pave the way for the understanding of the still-debated mechanism of action of an antimicrobial peptide (trichogin GA IV) and the pharmacokinetic properties of a peptide drug (semaglutide) currently in use for the therapy of type-II diabetes.
Collapse
Affiliation(s)
- Emanuela Gatto
- PEPSA-LAB, Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy;
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padua, 35131 Padua, Italy;
| | - Mariano Venanzi
- PEPSA-LAB, Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-7259-4468
| |
Collapse
|
19
|
Hu Z, Xu Y, Wang H, Fan GC, Luo X. Self-powered anti-interference photoelectrochemical immunosensor based on Au/ZIS/CIS heterojunction photocathode with zwitterionic peptide anchoring. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Furukawa H, Inaba H, Sasaki Y, Akiyoshi K, Matsuura K. Embedding a membrane protein into an enveloped artificial viral replica. RSC Chem Biol 2022; 3:231-241. [PMID: 35360888 PMCID: PMC8827153 DOI: 10.1039/d1cb00166c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Natural enveloped viruses, in which nucleocapsids are covered with lipid bilayers, contain membrane proteins on the outer surface that are involved in diverse functions, such as adhesion and infection of host cells. Previously, we constructed an enveloped artificial viral capsid through the complexation of cationic lipid bilayers onto an anionic artificial viral capsid self-assembled from β-annulus peptides. Here we demonstrate the embedding of the membrane protein Connexin-43 (Cx43), on the enveloped artificial viral capsid using a cell-free expression system. The expression of Cx43 in the presence of the enveloped artificial viral capsid was confirmed by western blot analysis. The embedding of Cx43 on the envelope was evaluated by detection via the anti-Cx43 antibody, using fluorescence correlation spectroscopy (FCS) and transmission electron microscopy (TEM). Interestingly, many spherical structures connected to each other were observed in TEM images of the Cx43-embedded enveloped viral replica. In addition, it was shown that fluorescent dyes could be selectively transported from Cx43-embedded enveloped viral replicas into Cx43-expressing HepG2 cells. This study provides a proof of concept for the creation of multimolecular crowding complexes, that is, an enveloped artificial viral replica embedded with membrane proteins. We demonstrate the embedding membrane protein, Cx43, on the enveloped artificial viral capsid using a cell-free expression system. The embedding of Cx43 on the envelope was evaluated by detection with anti-Cx43 antibody using FCS and TEM.![]()
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| |
Collapse
|
21
|
Abstract
Bioorthogonal chemistry is a set of methods using the chemistry of non-native functional groups to explore and understand biology in living organisms. In this review, we summarize the most common reactions used in bioorthogonal methods, their relative advantages and disadvantages, and their frequency of occurrence in the published literature. We also briefly discuss some of the less common but potentially useful methods. We then analyze the bioorthogonal-related publications in the CAS Content Collection to determine how often different types of biomolecules such as proteins, carbohydrates, glycans, and lipids have been studied using bioorthogonal chemistry. The most prevalent biological and chemical methods for attaching bioorthogonal functional groups to these biomolecules are elaborated. We also analyze the publication volume related to different types of bioorthogonal applications in the CAS Content Collection. The use of bioorthogonal chemistry for imaging, identifying, and characterizing biomolecules and for delivering drugs to treat disease is discussed at length. Bioorthogonal chemistry for the surface attachment of proteins and in the use of modified carbohydrates is briefly noted. Finally, we summarize the state of the art in bioorthogonal chemistry and its current limitations and promise for its future productive use in chemistry and biology.
Collapse
Affiliation(s)
- Robert E Bird
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Steven A Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xiang Yu
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
22
|
Jhong JH, Yao L, Pang Y, Li Z, Chung CR, Wang R, Li S, Li W, Luo M, Ma R, Huang Y, Zhu X, Zhang J, Feng H, Cheng Q, Wang C, Xi K, Wu LC, Chang TH, Horng JT, Zhu L, Chiang YC, Wang Z, Lee TY. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res 2021; 50:D460-D470. [PMID: 34850155 PMCID: PMC8690246 DOI: 10.1093/nar/gkab1080] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.
Collapse
Affiliation(s)
- Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhongyan Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Rulan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenshuo Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mengqi Luo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Renfei Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuqi Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaoning Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahong Zhang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hexiang Feng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qifan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chunxuan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kun Xi
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 10675, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
23
|
Li C, Xia Y, Liu C, Huang R, Qi W, He Z, Su R. Lubricin-Inspired Loop Zwitterionic Peptide for Fabrication of Superior Antifouling Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41978-41986. [PMID: 34448564 DOI: 10.1021/acsami.1c09254] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biofouling represents great challenges in many applications, and zwitterionic peptides have been a promising candidate due to their biocompatibility and excellent antifouling performance. Inspired by lubricin, we designed a loop-like zwitterionic peptide and investigated the effect of conformation (linear or loop) on the antifouling properties using a combination of surface plasma resonance (SPR), surface force apparatus (SFA), and all atomistic molecular dynamics (MD) simulation techniques. Our results demonstrate that the loop-like zwitterionic peptides perform better in resisting the adsorption of proteins and bacteria. SFA measurements show that the loop-like peptides reduce the adhesion between the modified surface and the modeling foulant lysozyme. All atomistic MD simulations reveal that the loop-like zwitterionic peptides are more rigid than the linear-like zwitterionic peptides and avoid the penetration of the terminus into the foulants, which lower the interaction between the zwitterionic peptides and foulants. Besides, the loop-like zwitterionic peptides avoid the aggregation of the chains and bind more water, improving the hydrophilicity and antifouling performance. Altogether, this study provides a more comprehensive understanding of the conformation effect of zwitterionic peptides on their antifouling properties, which may contribute to designing novel antifouling materials in various biomedical applications.
Collapse
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Petrochemical Research Institute, PetroChina, Beijing 102206, P. R. China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
24
|
Li C, Li M, Qi W, Su R, Yu J. Effect of Hydrophobicity and Charge Separation on the Antifouling Properties of Surface-Tethered Zwitterionic Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8455-8462. [PMID: 34228454 DOI: 10.1021/acs.langmuir.1c00803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic peptides emerge as a class of highly effective antifouling material in a wide range of applications such as biosensors, biomedical devices, and implants. We incorporated neutral amino acid spacers with different hydrophobicities, including serine (Ser), glycine (Gly), and leucine (Leu), into zwitterionic peptides with lysine-glutamic acid repeating units and investigated the structure and antifouling performance of the zwitterionic peptide brushes by surface plasma resonance, surface force apparatus (SFA), and all-atomistic molecular dynamics (MD) simulation techniques. Our results demonstrate that the hydrophilicity of neutral spacers alters the structure and antifouling performance of the peptide-modified surface. Hydrophilic Ser-inserted peptides reduced the interaction between the peptide monolayer and protein foulants, while hydrophobic Leu significantly increased the protein adhesion. SFA force measurements show that the presence of more spacers would increase the adhesion between the peptide monolayer and the modeling foulant lysozyme, especially for the hydrophobic spacers. MD simulations reveal that hydrophilic Ser spacers retain the hydrophilicity of the peptide monolayer and improve the antifouling performance, and Gly spacers give rise to more interchain cross-links. Leu spacers result in a more hydrophobic peptide monolayer, which leads to dehydration of the peptide monolayer and reduces the antifouling performances.
Collapse
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
- Petrochemical Research Institute, PetroChina, Beijing 102206, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
25
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|
26
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
27
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
28
|
Wang F, Gnewou O, Modlin C, Beltran LC, Xu C, Su Z, Juneja P, Grigoryan G, Egelman EH, Conticello VP. Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat Commun 2021; 12:407. [PMID: 33462223 PMCID: PMC7814010 DOI: 10.1038/s41467-020-20689-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The exquisite structure-function correlations observed in filamentous protein assemblies provide a paradigm for the design of synthetic peptide-based nanomaterials. However, the plasticity of quaternary structure in sequence-space and the lability of helical symmetry present significant challenges to the de novo design and structural analysis of such filaments. Here, we describe a rational approach to design self-assembling peptide nanotubes based on controlling lateral interactions between protofilaments having an unusual cross-α supramolecular architecture. Near-atomic resolution cryo-EM structural analysis of seven designed nanotubes provides insight into the designability of interfaces within these synthetic peptide assemblies and identifies a non-native structural interaction based on a pair of arginine residues. This arginine clasp motif can robustly mediate cohesive interactions between protofilaments within the cross-α nanotubes. The structure of the resultant assemblies can be controlled through the sequence and length of the peptide subunits, which generates synthetic peptide filaments of similar dimensions to flagella and pili.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Charles Modlin
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Leticia C Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chunfu Xu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Puneet Juneja
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA. .,The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Electrochemical sensing interfaces based on hierarchically architectured zwitterionic peptides for ultralow fouling detection of alpha fetoprotein in serum. Anal Chim Acta 2020; 1146:17-23. [PMID: 33461713 DOI: 10.1016/j.aca.2020.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Herein, an electrochemical sensing platform based on zwitterionic peptide with a hierarchical structure was constructed for ultralow fouling and highly sensitive protein quantification. Through the combination of CPPPPEKEKEKEK and CPPPPEKEKEK peptides, hierarchical antifouling peptide brushes were formed and exhibited excellent antifouling property, which can be further modified with alpha fetoprotein (AFP) aptamer to achieve highly sensitive detection of AFP. The hierarchical peptide brush-based sensor system achieved an AFP quantification range from 1.0 fg mL-1 to 1.0 ng mL-1, with a very low limit of detection as low as 0.59 fg mL-1. In addition, due to the superior antifouling property of the newly designed hierarchical peptide brushes, the electrochemical biosensor supported the quantification of AFP in solutions with a high concentration of nonspecific proteins without sacrifice in sensitivity. It is worth noting that the constructed antifouling biosensor ensured quantitative recruitment of AFP in clinical serum samples with acceptable accuracy when compared with the commonly used method in the hospital. The strategy of constructing sensing interfaces based on designed hierarchical peptide brushes provided an effective way to develop biosensors with both excellent antifouling capability and high sensitivity.
Collapse
|
30
|
Fernandes CSM, Rodrigues AL, Alves VD, Fernandes TG, Pina AS, Roque ACA. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell Encapsulation and Differentiation. Biomacromolecules 2020; 21:3081-3091. [DOI: 10.1021/acs.biomac.0c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Cláudia S. M. Fernandes
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - André L. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 049-001 Lisboa, Portugal
| | - Vitor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 049-001 Lisboa, Portugal
| | - Ana Sofia Pina
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Ana Cecília A. Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
31
|
Furukawa H, Inaba H, Inoue F, Sasaki Y, Akiyoshi K, Matsuura K. Enveloped artificial viral capsids self-assembled from anionic β-annulus peptide and cationic lipid bilayer. Chem Commun (Camb) 2020; 56:7092-7095. [PMID: 32490862 DOI: 10.1039/d0cc02622k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anionic artificial viral capsids were self-assembled from β-annulus-EE peptide, then complexed with lipid-bilayer-containing cationic lipids via electrostatic interaction to form enveloped artificial viral capsids. The critical aggregation concentration of the enveloped artificial viral capsid was significantly lower than that of the uncomplexed artificial viral capsid, indicating that the lipid bilayer stabilised the capsid structure.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Goswami KG, Saha B, De P. Alternating copolymers with glycyl-glycine and alanyl-alanine side-chain pendants: synthesis, characterization and solution properties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1759433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Krishna Gopal Goswami
- Department of Chemical Sciences, Polymer Research Centre and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Nadia, India
| | - Biswajit Saha
- Department of Chemical Sciences, Polymer Research Centre and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Nadia, India
| | - Priyadarsi De
- Department of Chemical Sciences, Polymer Research Centre and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Nadia, India
| |
Collapse
|
34
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
35
|
Li C, Liu C, Li M, Xu X, Li S, Qi W, Su R, Yu J. Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules 2020; 21:2087-2095. [DOI: 10.1021/acs.biomac.0c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
36
|
Wang L, Zhou Y, Wang X, Feng L, Liu X. Preparation of Inverse Opal Hydroxyapatite and Drug Delivery Properties. ChemistrySelect 2020. [DOI: 10.1002/slct.201904766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li‐li Wang
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Ye‐min Zhou
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Xiu‐feng Wang
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Li‐na Feng
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Xin‐xin Liu
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
37
|
Matsuura K, Ota J, Fujita S, Shiomi Y, Inaba H. Construction of Ribonuclease-Decorated Artificial Virus-like Capsid by Peptide Self-assembly. J Org Chem 2020; 85:1668-1673. [PMID: 31875395 DOI: 10.1021/acs.joc.9b02295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Artificial virus-like capsids decorated with ribonuclease S (RNase S) on their exterior were constructed by the self-assembly of β-annulus-S-peptide and the interaction between S-peptide moiety and S-protein. The β-annulus-S-peptide was synthesized by native chemical ligation of β-annulus-SBz peptide with Cys-containing S-peptide that self-assembled into artificial virus-like capsids of approximately 47 nm in size. Reconstruction of RNase S on the artificial virus-like capsids afforded spherical assembly attached small spheres on the surface, which retained ribonuclease activity.
Collapse
|
38
|
Shao S, Hu Q, Wu W, Wang M, Huang J, Zhao X, Tang G, Liang T. Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomater Sci 2020; 8:6579-6591. [PMID: 33231584 DOI: 10.1039/d0bm00794c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
miRNA cocktail therapy based on pH-responsive nanoparticles featuring PEG detachment and size transformation is a potential strategy for HCC treatment.
Collapse
Affiliation(s)
- Shiyi Shao
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Wangteng Wu
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Junming Huang
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Xinyu Zhao
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| | - Guping Tang
- Institute of Chemistry Biology and Pharmaceutical Chemistry
- Zhejiang University
- Hangzhou 310028
- China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310003
- China
| |
Collapse
|
39
|
Kröger APP, Paats JWD, Boonen RJEA, Hamelmann NM, Paulusse JMJ. Pentafluorophenyl-based single-chain polymer nanoparticles as a versatile platform towards protein mimicry. Polym Chem 2020. [DOI: 10.1039/d0py00922a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pentafluorophenyl-single chain polymer nanoparticles are readily conjugated with functional amines enabling facile SCNP modification, adjustment of physicochemical properties, and even protein mimicry.
Collapse
Affiliation(s)
- A. Pia P. Kröger
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Jan-Willem D. Paats
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Roy J. E. A. Boonen
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Naomi M. Hamelmann
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Jos M. J. Paulusse
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| |
Collapse
|
40
|
Sar P, Ghosh S, Gordievskaya YD, Goswami KG, Kramarenko EY, De P. pH-Induced Amphiphilicity-Reversing Schizophrenic Aggregation by Alternating Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01804] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pintu Sar
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Sipra Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Yulia D. Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Krishna Gopal Goswami
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
41
|
van Rijt MMJ, Ciaffoni A, Ianiro A, Moradi MA, Boyle AL, Kros A, Friedrich H, Sommerdijk NAJM, Patterson JP. Designing stable, hierarchical peptide fibers from block co-polypeptide sequences. Chem Sci 2019; 10:9001-9008. [PMID: 32874486 PMCID: PMC7449534 DOI: 10.1039/c9sc00800d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Here we report the pH induced self-assembly of equilibrium zwitterionically charged block co-polypeptide nanotubes into hierarchical nanotube fibers.
Natural materials, such as collagen, can assemble with multiple levels of organization in solution. Achieving a similar degree of control over morphology, stability and hierarchical organization with equilibrium synthetic materials remains elusive. For the assembly of peptidic materials the process is controlled by a complex interplay between hydrophobic interactions, electrostatics and secondary structure formation. Consequently, fine tuning the thermodynamics and kinetics of assembly remains extremely challenging. Here, we synthesized a set of block co polypeptides with varying hydrophobicity and ability to form secondary structure. From this set we select a sequence with balanced interactions that results in the formation of high-aspect ratio thermodynamically favored nanotubes, stable between pH 2 and 12 and up to 80 °C. This stability permits their hierarchical assembly into bundled nanotube fibers by directing the pH and inducing complementary zwitterionic charge behavior. This block co-polypeptide design strategy, using defined sequences, provides a straightforward approach to creating complex hierarchical peptide-based assemblies with tunable interactions.
Collapse
Affiliation(s)
- Mark M J van Rijt
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Adriano Ciaffoni
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Alessandro Ianiro
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands.,Laboratory of Physical Chemistry , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Mohammad-Amin Moradi
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P. O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Joseph P Patterson
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
42
|
Abstract
Capsid of tomato bushy stunt virus consists of an outer coat protein shell decorated on an internal skeleton comprising a β-annulus motif. We mimicked this capsid structure with our artificial viral capsid dressed up with protein. We synthesized the β-annulus peptide bearing a Cys at the C-terminal side and linked it with Cys34 of the human serum albumin (HSA) via a bismaleimide linker. The β-annulus peptide-HSA conjugate self-assembled into spherical structures of a 50-70 nm size range in the Tris-HCl buffer, with the ζ-potential of assemblies of such conjugate revealing that HSA proteins were displayed on the outer surface of the artificial viral capsid. Interestingly, the critical aggregation concentration (CAC) of the conjugate in the Tris-HCl buffer at 25 °C was approximately 0.01 μM, or 1/2500 lower than that of the unmodified β-annulus peptides, suggesting that the artificial viral capsids were stabilized via HSA modification. The present strategy of constructing protein nanocapsule by self-assembly of a β-annulus peptide-protein conjugate is simpler than that of previously reported protein nanocapsules.
Collapse
|
43
|
Liu R, Hudalla GA. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials. Molecules 2019; 24:E1450. [PMID: 31013712 PMCID: PMC6514692 DOI: 10.3390/molecules24081450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout nature, self-assembly gives rise to functional supramolecular biomaterials that can perform complex tasks with extraordinary efficiency and specificity. Inspired by these examples, self-assembly is increasingly used to fabricate synthetic supramolecular biomaterials for diverse applications in biomedicine and biotechnology. Peptides are particularly attractive as building blocks for these materials because they are based on naturally derived amino acids that are biocompatible and biodegradable; they can be synthesized using scalable and cost-effective methods, and their sequence can be tailored to encode formation of diverse architectures. To endow synthetic supramolecular biomaterials with functional capabilities, it is now commonplace to conjugate self-assembling building blocks to molecules having a desired functional property, such as selective recognition of a cell surface receptor or soluble protein, antigenicity, or enzymatic activity. This review surveys recent advances in using self-assembling peptides as handles to incorporate biologically active molecules into supramolecular biomaterials. Particular emphasis is placed on examples of functional nanofibers, nanovesicles, and other nano-scale structures that are fabricated by linking self-assembling peptides to proteins and carbohydrates. Collectively, this review highlights the enormous potential of these approaches to create supramolecular biomaterials with sophisticated functional capabilities that can be finely tuned to meet the needs of downstream applications.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
44
|
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180293] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuto Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
45
|
Ederth T, Lerm M, Orihuela B, Rittschof D. Resistance of Zwitterionic Peptide Monolayers to Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1818-1827. [PMID: 30103609 DOI: 10.1021/acs.langmuir.8b01625] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembled monolayers (SAMs) are widely used in science and engineering, and recent progress has demonstrated the utility of zwitterionic peptides with alternating lysine (K) and glutamic acid (E) residues for antifouling purposes. Aiming at developing a peptide-based fouling-resistant SAM suitable for presentation of surface-attached pheromones for barnacle larvae, we have investigated five different peptide SAMs, where four are based on the EK motif, and the fifth was designed based on general principles for fouling resistance. The SAMs were formed by self-assembly onto gold substrates via cysteine residues on the peptides, and formation of SAMs was verified via ellipsometry, wettability, infrared reflection-absorption spectroscopy and cyclic voltammetry. Settlement of cypris larvae of the barnacle Balanus (=Amphibalanus) amphitrite, the target of pheromone studies, was tested. SAMs were also subjected to fouling assays using protein solutions, blood serum, and the bacterium Mycobacterium marinum. The results confirm the favorable antifouling properties of EK-containing peptides in most of the assays, although this did not apply to the barnacle larvae settlement test, where settlement was low on only one of the peptide SAMs. The one peptide that had antifouling properties for barnacles did not contain a pheromone motif, and would not be susceptible to degredation by common serine proteases. We conclude that the otherwise broadly effective antifouling properties of EK-containing peptide SAMs is not directly applicable to barnacles, and that great care must be exercised in the design of peptide-based SAMs for presentation of barnacle-specific ligands.
Collapse
Affiliation(s)
- Thomas Ederth
- Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine , Linköping University , SE-581 83 Linköping , Sweden
| | - Beatriz Orihuela
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University , Beaufort , North Carolina 28516-9721 , United States
| | - Daniel Rittschof
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University , Beaufort , North Carolina 28516-9721 , United States
| |
Collapse
|
46
|
Otter R, Besenius P. Supramolecular assembly of functional peptide–polymer conjugates. Org Biomol Chem 2019; 17:6719-6734. [DOI: 10.1039/c9ob01191a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The following review gives an overview about synthetic peptide–polymer conjugates as macromolecular building blocks and their self-assembly into a variety of supramolecular architectures, from supramolecular polymer chains, to anisotropic 1D arrays, 2D layers, and more complex 3D networks.
Collapse
Affiliation(s)
- Ronja Otter
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| | - Pol Besenius
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
47
|
Athiyarath V, Sureshan KM. Spontaneous Single-Crystal-to-Single-Crystal Evolution of Two Cross-Laminated Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry; Indian Institute of Science Education and Research; Thiruvananthapuram Kerala- 695 551 India
| | - Kana M. Sureshan
- School of Chemistry; Indian Institute of Science Education and Research; Thiruvananthapuram Kerala- 695 551 India
| |
Collapse
|
48
|
Athiyarath V, Sureshan KM. Spontaneous Single-Crystal-to-Single-Crystal Evolution of Two Cross-Laminated Polymers. Angew Chem Int Ed Engl 2018; 58:612-617. [DOI: 10.1002/anie.201812094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry; Indian Institute of Science Education and Research; Thiruvananthapuram Kerala- 695 551 India
| | - Kana M. Sureshan
- School of Chemistry; Indian Institute of Science Education and Research; Thiruvananthapuram Kerala- 695 551 India
| |
Collapse
|
49
|
Inaba H, Matsuura K. Peptide Nanomaterials Designed from Natural Supramolecular Systems. CHEM REC 2018; 19:843-858. [PMID: 30375148 DOI: 10.1002/tcr.201800149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
Natural supramolecular assemblies exhibit unique structural and functional properties that have been optimized over the course of evolution. Inspired by these natural systems, various bio-nanomaterials have been developed using peptides, proteins, and nucleic acids as components. Peptides are attractive building blocks because they enable the important domains of natural protein assemblies to be isolated and optimized while retaining the original structures and functions. Furthermore, the peptide subunits can be conjugated with exogenous molecules such as peptides, proteins, nucleic acids, and metal nanoparticles to generate advanced functions. In this personal account, we summarize recent progress in the construction of peptide-based nanomaterial designed from natural supramolecular systems, including (1) artificial viral capsids, (2) self-assembled nanofibers, and (3) protein-binding motifs. The peptides inspired by nature should provide new design principles for bio-nanomaterials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| |
Collapse
|
50
|
Sánchez-Ferrer A, Adamcik J, Handschin S, Hiew SH, Miserez A, Mezzenga R. Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-Rich Amyloidogenic Peptide. ACS NANO 2018; 12:9152-9161. [PMID: 30106557 DOI: 10.1021/acsnano.8b03582] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Squid sucker ring teeth (SRT) have emerged as a promising protein-only, thermoplastic biopolymer with an increasing number of biomedical and engineering applications demonstrated in recent years. SRT is a supra-molecular network whereby a flexible, amorphous matrix is mechanically reinforced by nanoconfined β-sheets. The building blocks for the SRT network are a family of suckerin proteins that share a common block copolymer architecture consisting of amorphous domains intervened by smaller, β-sheet forming modules. Recent studies have identified the peptide A1H1 (peptide sequence AATAVSHTTHHA) as one of the most abundant β-sheet forming domains within the suckerin protein family. However, we still have little understanding of the assembly mechanisms by which the A1H1 peptide may assemble into its functional load-bearing domains. In this study, we conduct a detailed self-assembly study of A1H1 and show that the peptide undergoes β-strands-driven elongation into amyloid-like fibrils with a rich polymorphism. The nanostructure of the fibrils was elucidated by small and wide-angle X-ray scattering (SAXS and WAXS) and atomic force microscopy (AFM). The presence of His-rich and Ala-rich segments results in an amphiphilic behavior and drives its assembly into fibrillar supramolecular chiral aggregates with helical ribbon configuration in solution, with the His-rich region exposed to the solvent molecules. Upon increase in concentration, the fibrils undergo gel formation, while preserving the same mesoscopic features. This complex phase behavior suggests that the repeat peptide modules of suckerins may be manipulated beyond their native biological environment to produce a wider variety of self-assembled amyloid-like nanostructures.
Collapse
Affiliation(s)
- Antoni Sánchez-Ferrer
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
| | - Jozef Adamcik
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
| | - Stephan Handschin
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
| | - Shu Hui Hiew
- School of Materials Science and Engineering , Nanyang Technological University (NTU) , 639798 , Singapore
| | - Ali Miserez
- School of Materials Science and Engineering , Nanyang Technological University (NTU) , 639798 , Singapore
- School of Biological Sciences , NTU , 637551 , Singapore
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
- Department of Materials , ETH Zurich , Zurich CH-8093 , Switzerland
| |
Collapse
|