1
|
Jyoti, Vaishali, Sharma S, Borthakur DP, Deepika, Malakar CC, Singh V. A transition metal-free [3 + 2] cycloaddition approach for the efficient synthesis of trisubstituted pyrrole derivatives from β-chlorovinyl aldehydes. Org Biomol Chem 2025; 23:4735-4742. [PMID: 40259739 DOI: 10.1039/d5ob00351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
A transition metal-free, Cs2CO3-promoted approach has been devised for the efficient synthesis of nitrile-substituted novel pyrrole derivatives from β-chlorovinyl aldehydes. Interestingly, the strategy was also found to be applicable to the synthesis of chromenone-fused pyrrole derivatives. The reaction proceeded through [3 + 2] cycloaddition between diversely substituted aryl propiolonitriles and toluenesulphonylmethyl isocyanide in DMF at ambient temperature. This approach offers several advantages including the use of inexpensive and readily available starting materials, wide substrate scope, operational simplicity, short reaction times (15 min-1.5 h), high atom economy, sustainable reaction conditions and high product yields. The strategy has been found to be amenable for gram-scale synthesis, and the scope of the strategy has been demonstrated for the synthesis of a diverse library of novel pyrrole derivatives with yields of up to 91%. The generated pyrrole derivatives are amenable for late-stage functionalisation and functional group interconversion.
Collapse
Affiliation(s)
- Jyoti
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Vaishali
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144008, Punjab, India
| | - Shreya Sharma
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | | | - Deepika
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144008, Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT), Manipur, Imphal, 795004, Manipur, India
| | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Xu W, Dang H, Sheng H, Shen J, Wang M. Synthesis of 3,4-unsubstituted isoquinolone derivatives from benzimidates and vinylene carbonate via cobalt(III)-catalyzed C-H activation/cyclization. Org Biomol Chem 2025; 23:3836-3840. [PMID: 40159919 DOI: 10.1039/d5ob00319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A cobalt(III)-catalyzed C-H activation/cyclization of benzimidates and vinylene carbonate has been developed. Various benzimidates showed good compatibility, providing isoquinolone derivatives in moderate to good yields. This strategy employs the inexpensive Co(III) as the catalyst and provides an efficient and practical solution for the synthesis of medicinally valuable 3,4-unsubstituted isoquinolone derivatives.
Collapse
Affiliation(s)
- Weiyan Xu
- Institution College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou, 311121, P. R. China.
| | - Haowen Dang
- Institution College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou, 311121, P. R. China.
| | - Huiru Sheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China.
| | - Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China.
| | - Min Wang
- Institution College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education. Hangzhou Normal University, Hangzhou, 311121, P. R. China.
| |
Collapse
|
3
|
Liu W, Ma Y, Huang Q, Sheng J, Lv L, Li Z. Pd-IPent-Catalyzed Defluorinative Annulation of gem-Difluorocyclopropanes with Enamides: Synthesis of Multisubstituted N-H Pyrroles. Org Lett 2025; 27:2151-2156. [PMID: 39984819 DOI: 10.1021/acs.orglett.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
We present a Pd-IPent-catalyzed ring-opening defluorinative annulation reaction of gem-difluorocyclopropanes with enamides, which provides a convenient and efficient strategy for the synthesis of multisubstituted N-H pyrrole derivatives. This transformation selectively cleaves the C1-C3 bond, two C-F bonds, and the C-N bond in a one-pot procedure. Additionally, this protocol allows for the modification of several bioactive molecules.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yahui Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
4
|
Zhao C, Li Y, Chen WK, Zeng Y. Computational Study of Hypervalent Chalcogen Bond Catalysis on the Hydroarylation of Styrene with Phenol: O-Activation vs π-Activation. J Org Chem 2025; 90:2860-2868. [PMID: 39950601 DOI: 10.1021/acs.joc.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Chalcogen bond catalysis is gaining recognition in organocatalysis due to its environmental benignity and relatively low cost. The hypervalent selenium salts can drive the hydroarylation of styrene and phenol, and hypervalent chalcogen···π catalysis has been proposed [Zhang, Q. Angew. Chem., Int. Ed. 2022, 61, e202208009]. In this work, the hydroarylation of styrene and phenol catalyzed by cyclic hypervalent selenium-based catalysts is investigated by density functional theory (DFT) calculations, and two activation modes are observed: one is on the styrene (π-activation mode), and the other is on the phenol (O-activation mode). The energy barriers via the O-activation mode are lower than those of the π-activation mode, and our proposed O-activation mode in this work may be more favorable. For the O-activation mode, energy barriers for the ortho-hydroarylation are lower than those for the para-hydroarylation, which is consistent with the experimental observation that the ortho-hydroarylation product is the major product and supports our proposed O-activation mode. Further investigation revealed that the stronger electrostatic interaction is the main factor leading to the ortho-hydroarylation in the O-activation mode compared to the para-hydroarylation. Moreover, the substituent effect of cyclic hypervalent selenium-based catalysts on the reactivity was investigated. This work would provide a valuable perspective on expanding applications for chalcogen bond catalysis.
Collapse
Affiliation(s)
- Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Wang B, Wang Z, Shen C, Dong K. Ligand-Controlled Regioselective Alkoxycarbonylation of Nonfunctionalized Unsymmetric Internal Alkynes. Chemistry 2025; 31:e202404091. [PMID: 39676560 DOI: 10.1002/chem.202404091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Pd-catalyzed alkoxycarbonylation of internal alkynes provides a straightforward access to α,β-disubstituted acrylic esters. Compared with the well-established regioselective alkoxycarbonylation of terminal alkynes, the regioselective hydrocarboxylation of non-functionalized unsymmetric internal alkynes was more challenging owing to the delicate differences of properties between the two substituents. Herein, by using either monophosphine ligand based on 2,3-dihydrobenzo[d][1,3]oxaphosphole motif or bidentate ligand Ph-Phox, the regioselective alkoxycarbonylations of aryl-aryl, aryl-alkyl and alkyl-alkyl disubstituted alkynes were achieved, giving a diversity of trisubstituted α,β-unsaturated carboxylic esters with moderate to excellent yields and high regioselectivity. The synthetic utility of obtained α,β-disubstituted acrylic esters was demonstrated.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Zhu YL, Long YL, Yang MY, Zhou Q, Zhao N, Ma XX, Chen J. Hydroxyl-Assisted and Co(III)-Catalyzed Redox-Neutral C-H Activation/Directing Group Migration of 2-Pyridones with Propargyl Alcohols: Synthesis of Tetrasubstituted Alkenes. J Org Chem 2024; 89:17281-17290. [PMID: 39527636 DOI: 10.1021/acs.joc.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study provides a practical route to synthesize tetrasubstituted alkenes that involves Co(III)-catalyzed C-H bond activation and regioselective insertion of the alkyne, followed by chelation of the substrate hydroxyl to Co and migration of the pyridine group. Density functional theory studies revealed the origin of regioselectivity and elucidated the crucial role of the hydroxyl group for the migration of pyridine. The method can be conducted on a gram scale, is compatible with a wide range of substrates, and has a high functional group tolerance. To demonstrate its significance, the method was used for the late-stage modification of Fasudil. Furthermore, the synthetic significance of the method was demonstrated by the various derivatizations of the products, many of which exhibit intriguing fluorescence characteristics.
Collapse
Affiliation(s)
- Yue-Lu Zhu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Yan-Lin Long
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Ming-Yang Yang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Qi Zhou
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Na Zhao
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Xue-Xiang Ma
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jiao Chen
- College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
7
|
Bhatti P, Gupta A, Chaudhari SB, Valmiki RK, Laha JK, Manna S. Skeletal Editing via Transition-Metal-Catalyzed Nitrene Insertion. CHEM REC 2024; 24:e202400184. [PMID: 39607383 DOI: 10.1002/tcr.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.
Collapse
Affiliation(s)
- Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Shubham B Chaudhari
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Rahul K Valmiki
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| |
Collapse
|
8
|
Zhou M, Zhao DR, Zhang L, Kuang YJ, Zhao YJ, Yu Y, Luo QL. Modular Synthesis of Polycarbonyl Compounds via Regioselective Hydration of Oxo-Alkynes. J Org Chem 2024; 89:16917-16922. [PMID: 39487794 DOI: 10.1021/acs.joc.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
A novel protocol has been developed for the modular synthesis of polycarbonyl compounds by catalytic hydration of 1,3-diketone-tethered alkynes. The hydration process exhibits good regioselectivity and high yields at room temperature, avoiding the use of strong acids and noble metals and the requirement for elevated temperatures. Mechanistic insights suggest that the hydration proceeds through a concerted process of alkyne protonation and remote carbonyl participation. This approach provides direct access to tandem heterocycle dyads and triads.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Deng-Rui Zhao
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liang Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yong-Jie Kuang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi-Jian Zhao
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yan Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Qun-Li Luo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Lopes EF, Dietl MC, Ziegler B, Rudolph M, Barcellos T, Oeser T, Lüdtke DS, Hashmi ASK. Gold Meets Selenium: Dual Activation of Selenium-Containing Propargyl Alcohols Towards the Synthesis of 2H-Chromenes and Mechanistic Insights. Chemistry 2024; 30:e202402426. [PMID: 39158373 DOI: 10.1002/chem.202402426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Herein, we report the synthesis of seleno-substituted chromenes from selenoalkynes and phenols. In this cascade reaction, the applied gold catalyst not only functions as a π-acid, but also as a Lewis acid, enabling the propargylic substitution in the first step to connect the oxygen carbon bond. Under the optimal reaction condition a total of 26 chromenes were accessible by this modular access. During scale up experiments, the hydrolysis of the vinylselenium substructure to the corresponding chromenones was observed. By revisiting the electron-rich starting materials, four chromenones were produced following a one-pot reaction using a single gold catalyst. To better understand the interaction of gold and selenium, a series of nuclear magnetic resonance studies and high-resolution mass spectrometry studies were performed, which led to the proposal of a mechanism for this transformation.
Collapse
Affiliation(s)
- Eric F Lopes
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Benjamin Ziegler
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products, Universidade de Caxias do Sul, Caxias do Sul, RS, 95070-560, Brazil
| | - Thomas Oeser
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Zhao Y, Zhao Z, Zhu S, Li SW, Hu L. Cu(II)-Catalyzed Reaction of Ethynyl Methylene Cyclic Carbamates and Amines: Synthesis of Polysubstituted Pyrroles. Org Lett 2024; 26:9237-9243. [PMID: 39422894 DOI: 10.1021/acs.orglett.4c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A copper-catalyzed efficient, operationally simple, general method for straightforward syntheses of polysubstituted pyrroles employing ethynyl methylene cyclic carbamates as precursors reacting with commercially available amines was first reported. A wide variety of polysubstituted pyrroles were obtained in acceptable to good yields under mild conditions. This protocol features broad substrate scope, high functional group tolerance, and easy operation, therefore enabling late-stage functionalization and rapid synthesis of bioactive compounds, including structurally complex marketed drugs and natural products. In addition, a scale-up experiment further highlighted the synthetic utility.
Collapse
Affiliation(s)
- Yujie Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhifei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shijie Zhu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Liangjian Hu
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay91400 Orsay, France
| |
Collapse
|
11
|
Kushwaha P, Saxena A, von Münchow T, Dana S, Saha B, Ackermann L. Metallaelectro-catalyzed alkyne annulations via C-H activations for sustainable heterocycle syntheses. Chem Commun (Camb) 2024; 60:12333-12364. [PMID: 39370984 PMCID: PMC11456994 DOI: 10.1039/d4cc03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Alkyne annulation represents a versatile and powerful strategy for the assembly of structurally complex compounds. Recent advances successfully enabled electrocatalytic alkyne annulations, significantly expanding the potential applications of this promising technique towards sustainable synthesis. The metallaelectro-catalyzed C-H activation/annulation stands out as a highly efficient approach that leverages electricity, combining the benefits of electrosynthesis with the power of transition-metal catalyzed C-H activation. Particularly attractive is the pairing of the electro-oxidative C-H activation with the valuable hydrogen evolution reaction (HER), thereby addressing the growing demand for green energy solutions. Herein, we provide an overview of the evolution of electrochemical C-H annulations with alkynes for the construction of heterocycles, with a topical focus on the underlying mechanism manifolds.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Click chemistry Research & Studies, Amity University, Noida, 201303, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Suman Dana
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Gupta A, Bhatti P, Laha JK, Manna S. Skeletal Editing by Hypervalent Iodine Mediated Nitrogen Insertion. Chemistry 2024; 30:e202401993. [PMID: 39046292 DOI: 10.1002/chem.202401993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Hypervalent iodine reagents are versatile and readily accessible reagents that have been extensively applied in contemporary synthesis in modern organic chemistry. Among them, iodonitrene (ArI=NR), is a powerful reactive species, widely used for a single-nitrogen-atom insertion reaction, and skeletal editing to construct N-heterocycles. Skeletal editing with reactive iodonitrene components has recently emerged as an exciting approach in modern chemical transformation. These reagents have been extensively used to produce biologically relevant heterocycles and functionalized molecular architectures. Recently, the insertion of a nitrogen-atom into hydrocarbons to generate N-heterocyclic compounds using hypervalent iodine reagents has been a significant focus in the field of molecular editing reactions. In this review, we discuss the rapidly emerging field of nitrene insertion, including skeletal editing and nitrogen insertion, using hypervalent iodine reagents to access nitrogen-containing heterocycles, and the current mechanistic understanding of these processes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| |
Collapse
|
13
|
Zhou Z, Huang X, Wei QY, Wang YL, Wu B, Yang JM. Access to Piperazine-Fused Pyrrolocarbazoles Enabled by Acid-Catalyzed Stereoselective Hydroarylation of Ynamide-Indoles and Subsequent Diels-Alder Reactions/Aromatizations. Org Lett 2024; 26:7273-7278. [PMID: 39133635 DOI: 10.1021/acs.orglett.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pyrrolocarbazole skeletons are well known to possess a variety of biological activities that might be therapeutically useful in the treatment of cancers. Herein, an acid-catalyzed stereoselective hydroarylation/Diels-Alder cycloaddition/aromatization of ynamide-indoles is described. We newly designed and synthesized a variety of piperazine-fused pyrrolocarbazole derivatives that could be further applied to the synthesis of potent Wee1 inhibitors.
Collapse
Affiliation(s)
- Ze Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Qing-Yi Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Yi-Lin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| |
Collapse
|
14
|
Zhu L, Zhao B, Xie K, Gui WT, Niu SL, Zheng PF, Chen YC, Qi XW, Ouyang Q. Metal π-Lewis base activation in palladium(0)-catalyzed trans-alkylative cyclization of alkynals. Chem Sci 2024; 15:13032-13040. [PMID: 39148807 PMCID: PMC11323327 DOI: 10.1039/d4sc04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The Pd(0)-mediated umpolung reaction of an alkyne to achieve trans-difunctionalization is a potential synthetic methodology, but its insightful activation mechanism of Pd(0)-alkyne interaction has yet to be established. Here, a Pd(0)-π-Lewis base activation mode is proposed and investigated by combining theoretical and experimental studies. In this activation mode, the Pd(0) coordinates to the alkyne group and enhances its nucleophilicity through π-back-donation, facilitating the nucleophilic attack on the aldehyde to generate a trans-Pd(ii)-vinyl complex. Ligand-effect studies reveal that the more electron-donating one would accelerate the reaction, and the cyclization of the challenging flexible C- or O-tethered substrates has been realized. The origin of regioselectivities is also explicated by the newly proposed metal π-Lewis base activation mode.
Collapse
Affiliation(s)
- Lei Zhu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
- Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Shapingba Chongqing 400038 China
| | - Bo Zhao
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Wu-Tao Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Sheng-Li Niu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Ying-Chun Chen
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Shapingba Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
15
|
Majeed A, Zafar A, Mushtaq Z, Iqbal MA. Advances in gold catalyzed synthesis of quinoid heteroaryls. RSC Adv 2024; 14:21047-21064. [PMID: 38962094 PMCID: PMC11220603 DOI: 10.1039/d4ra03368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
This review explores recent advancements in synthesizing quinoid heteroaryls, namely quinazoline and quinoline, vital in chemistry due to their prevalence in natural products and pharmaceuticals. It emphasizes the rapid, highly efficient, and economically viable synthesis achieved through gold-catalyzed cascade protocols. By investigating methodologies and reaction pathways, the review underscores exceptional yields attainable in the synthesis of quinoid heteroaryls. It offers valuable insights into accessing these complex structures through efficient synthetic routes. Various strategies, including cyclization, heteroarylation, cycloisomerization, cyclo-condensation, intermolecular and intramolecular cascade reactions, are covered, highlighting the versatility of gold-catalyzed approaches. The comprehensive compilation of different synthetic approaches and elucidation of reaction mechanisms contribute to a deeper understanding of the field. This review paves the way for future advancements in synthesizing quinoid heteroaryls and their applications in drug discovery and materials science.
Collapse
Affiliation(s)
- Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zanira Mushtaq
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| |
Collapse
|
16
|
Tang X, Jiang Y, Song L, Van der Eycken EV. Recent Advances in the Synthesis of Rosettacin. Molecules 2024; 29:2176. [PMID: 38792039 PMCID: PMC11124376 DOI: 10.3390/molecules29102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Camptothecin and its analogues show important antitumor activity and have been used in clinical studies. However, hydrolysis of lactone in the E ring seriously attenuates the antitumor activity. To change this situation, aromathecin alkaloids are investigated in order to replace camptothecins. Potential antitumor activity has obtained more and more attention from organic and pharmaceutical chemists. As a member of the aromathecin alkaloids, rosettacin has been synthesized via different methods. This review summarizes recent advances in the synthesis of rosettacin.
Collapse
Affiliation(s)
- Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing 210037, China; (X.T.)
| | - Yukang Jiang
- College of Science, Nanjing Forestry University, Nanjing 210037, China; (X.T.)
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
17
|
Shinde J, Suresh S, Kavala V, Yao CF. Pd(II)-catalyzed hydroarylations/hydroalkenylations of terminal alkynes: regioselective synthesis of allylic, homoallylic, and 1,3-diene systems. Chem Commun (Camb) 2024; 60:3790-3793. [PMID: 38456475 DOI: 10.1039/d4cc00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A Pd-catalyzed regioselective hydroarylation of terminal alkynes containing a heteroatom has been developed via carbopalladation for the synthesis of allylic ethers, amines, and homoallylic alcohols. Moreover, hydroalkenylation of alkynes produces a variety of stereodefined 1,4-dienes with high regioselectivity. The important features of the present protocol are that it is highly regioselective, operationally rapid, and scalable with a huge substrate scope using only 3 mol% of PdCl2(PPh3)2 catalyst in the presence of a mild base KOAc.
Collapse
Affiliation(s)
- Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
18
|
Gallegos M, Del Amo V, Guevara-Vela JM, Moreno-Alcántar G, Martín Pendás Á. Radical revelations: the pnictogen effect in linear acetylenes. Phys Chem Chem Phys 2024; 26:7718-7730. [PMID: 38372358 DOI: 10.1039/d3cp06324k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Acetylenes are essential building blocks in modern chemistry due to their remarkable modularity. The introduction of heteroatoms, such as pnictogens (X), is one of the simplest approaches to altering the C≡C bond. However, the chemistry of the resultant dipnictogenoacetylenes (DXAs) is strongly dependent on the nature of X. In this work, rigorous theoretical chemistry tools are employed to shed light on the origin of these differences, providing a detailed evaluation of the impact of X on the geometrical and electronic features of DXAs. Special emphasis is made on the study of the carbene character of the systems through the analysis of the interconversion mechanism between the linear and zigzag isomers. Our results show that second-period atoms behave drastically differently to the remaining X: down the group, a zwitterionic resonance form emerges at the expense of decreasing the carbenoid role, eventually resulting in an electrostatically driven ring closure. Furthermore, our findings pave the way to potentially unveiling novel routes for the promotion of free-radical chemistry.
Collapse
Affiliation(s)
- Miguel Gallegos
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo E-33006, Spain.
| | - Vicente Del Amo
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo E-33006, Spain
| | | | - Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, Garching b., München 85748, Germany
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo E-33006, Spain.
| |
Collapse
|
19
|
Chen X, Zhao Y, Huang C, Zhao Z, Zhao W, Li SW. Catalytic asymmetric conjugate addition of coumarins to unsaturated ketones catalyzed by a chiral-at-metal Rh(III) complex. Chem Commun (Camb) 2023; 60:236-239. [PMID: 38054345 DOI: 10.1039/d3cc04726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The first catalytic asymmetric vinylogous Michael addition of coumarins to unsaturated ketones catalyzed by chiral rhodium catalysts has been established. This strategy allowed the synthesis of a variety of highly enantioenriched compounds containing coumarin skeletons in 41-99% yields and 84-99% ee. The developed reaction enriches the chemistry of catalytic asymmetric vinylogous Michael additions of 3-cyano-4-methylcoumarins. Furthermore, the protocol showed obvious advantages in reaction enantioselectivity. When the chiral rhodium catalyst was reduced to 0.06 mol%, a Gram-level reaction was still achieved to provide the desired products with 99% ee.
Collapse
Affiliation(s)
- Xiangjie Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Yujie Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Cheng Huang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Zhifei Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Weiwei Zhao
- College of Life Science & Technology, Tarim University, Alar, 843300, Xinjiang, People's Republic of China.
| | - Shi-Wu Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| |
Collapse
|
20
|
Lv Y, Wang Z, Song L, Hao J, Zhu S, Yue H, Wei W, Yi D. Copper-Catalyzed Three-Component Tandem Reaction of Alkynes, α-Diazo Esters, and TMSN 3 to Access N-Substituted 1,2,3-Triazoles. J Org Chem 2023. [PMID: 38047963 DOI: 10.1021/acs.joc.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An efficient copper-catalyzed three-component tandem reaction of alkynes, α-diazo esters, and TMSN3 to construct triazoles has been developed. Through this strategy, a number of diverse N-substituted 1,2,3-triazoles were conveniently obtained in moderate to good yields from simple and readily available starting materials using K2CO3 as the base. The mechanism of the tandem Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and Cu-carbenoid-participated C-N coupling reaction has been investigated.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhiwei Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lianhui Song
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jindong Hao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
21
|
Zhan LW, Lu CJ, Feng J, Liu RR. Atroposelective Synthesis of C-N Vinylindole Atropisomers by Palladium-Catalyzed Asymmetric Hydroarylation of 1-Alkynylindoles. Angew Chem Int Ed Engl 2023; 62:e202312930. [PMID: 37747364 DOI: 10.1002/anie.202312930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Transition-metal-catalyzed hydroarylation of unsymmetrical internal alkynes remains challenging because of the difficulty in controlling regioselectivity and stereoselectivity. Moreover, the enantioselective hydroarylation of alkynes using organoboron reagents has not been reported. Herein, we report for the first time that palladium compounds can catalyze the hydroarylation of 1-alkynylindoles with organoborons for the synthesis of chiral C-N atropisomers. A series of rarely reported vinylindole atropisomers was synthesized with excellent regio-, stereo- (Z-selectivity), and enantioselectivity under mild reaction conditions. The ready availability of organoborons and alkynes and the simplicity, high stereoselectivity, and good functional group tolerance of this catalytic system make it highly attractive.
Collapse
Affiliation(s)
- Li-Wen Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
22
|
Pang Y, Zhao Z, Wang Y. Activation of alkynes by chalcogen bonding: a Se⋯π interaction catalyzed intramolecular cyclization of 1,6-diynes. Chem Commun (Camb) 2023; 59:12278-12281. [PMID: 37751221 DOI: 10.1039/d3cc04096h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The activation of the triple bond of alkynes was dominated by transition metals, while it is difficult for organocatalysts to play an effective role in this realm. Herein, we describe the activation of alkynes by chalcogen bonding, and the weak Se⋯π interaction was capable of catalyzing the intramolecular cyclization of 1,6-diynes, thus adding a new capability in the list of supramolecular catalysis.
Collapse
Affiliation(s)
- Yuanling Pang
- School of Chemistry and Chemical Engineering & Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, China.
| | - Zhiguo Zhao
- School of Chemistry and Chemical Engineering & Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, China.
| | - Yao Wang
- School of Chemistry and Chemical Engineering & Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, China.
| |
Collapse
|
23
|
Xiong M, Chen F, Shu Y, Wu X, Tang J, Yang F, Xing D. Iridium(I)-Catalyzed Atroposelective Alkenylation of Heterobiaryls with Terminal Alkynes. Org Lett 2023; 25:5703-5708. [PMID: 37523590 DOI: 10.1021/acs.orglett.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Herein we report an iridium(I)-catalyzed atroposelective alkenylation of isoquinoline-derived heterobiaryls with terminal alkynes. In the presence of a cationic iridium(I) catalyst with (R)-SEGPHOS as the chiral ligand, this atom-economical alkenylation protocol allows the rapid construction of a series of axially chiral alkenylated heterobiaryls in moderate to good yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Maoqian Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Feifei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuhang Shu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Dattatri, Kumar Reddy Singam M, Vavilapalli S, Babu Nanubolu J, Sridhar Reddy M. Propargyl Alcohols as Bifunctional Reagents for Divergent Annulations of Biphenylamines via Dual C-H Functionalization/Dual Oxidative Cyclization. Angew Chem Int Ed Engl 2023; 62:e202215825. [PMID: 36583268 DOI: 10.1002/anie.202215825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The C-H functionalization strategy provides access to valuable molecules that previously required convoluted synthetic attempts. Dual C-H unsymmetrical functionalization, with a single bifunctional reagent, is an effective tactic. Propargyl alcohols (PAs), despite containing a reactive C≡C bond, have not been explored as building blocks via oxidative cleavage. Annulations via C-H activation are a versatile and synthetically attractive strategy. We disclose PA as a new bifunctional reagent for unsymmetrical dual C-H functionalization of biphenylamine for regioselectively annulated outcomes. On tuning the conditions, the annulation bifurcated towards an unusual dual oxidative cyclization. This method accommodates a wide range of PAs and showcases late-stage diversification of some natural products.
Collapse
Affiliation(s)
- Dattatri
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Suresh Vavilapalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
25
|
Ghosh T, Bhakta S. Advancements in Gold-Catalyzed Cascade Reactions to Access Carbocycles and Heterocycles: An Overview. CHEM REC 2023; 23:e202200225. [PMID: 36543388 DOI: 10.1002/tcr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Indexed: 12/24/2022]
Abstract
This review summarizes recent developments (from 2006 to 2022) in numerous important and efficient carbo- and heterocycle generations using gold-catalyzed cascade protocols. Herein, methodologies involve selectivity, cost-effectiveness, and ease of product formation being controlled by the ligand as well as the counter anion, catalyst, substrate, and reaction conditions. Gold-catalyzed cascade reactions covered different strategies through the compilation of various approaches such as cyclization, hydroarylation, intermolecular and intramolecular cascade reactions, etc. This entitled reaction is also useful for the synthesis of spiro, fused, bridged carbo- and heterocycles.
Collapse
Affiliation(s)
- T Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, West Bengal, India.,Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| | - S Bhakta
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| |
Collapse
|
26
|
Sankaram GS, Sahoo T, Sridhar B, Subba Reddy BV. Rhodium(III)-catalyzed oxidative annulation of N-arylbenzamidines with maleimides via dual C-H activation. Org Biomol Chem 2023; 21:1719-1724. [PMID: 36723131 DOI: 10.1039/d2ob01972h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An oxidative annulation of N-arylbenzimidamides with maleimides has been developed for the first time using a catalytic amount of the [Cp*RhCl2]2 complex for the synthesis of a diverse range of 1H-benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c]isoquinoline-1,3(2H)-dione derivatives. This method is versatile and atom-economical for producing polycyclic benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c] isoquinoline-1,3(2H)-dione scaffolds in a single step.
Collapse
Affiliation(s)
- G Siva Sankaram
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Tanmoy Sahoo
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
27
|
Zhang A, Pak G, Yu SY, Yang S, Kim J. Synthesis of (+)-Xylogiblactones B and C through a Kinetic Resolution of the Allenoate γ-Addition: Stereochemical Establishment. J Org Chem 2023; 88:2605-2611. [PMID: 36723434 DOI: 10.1021/acs.joc.2c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Concise syntheses of naturally occurring γ-butenolides (+)-xylogiblactones B and C have been achieved for the first time starting from commercial methyl crotonate in 5-8 steps. The synthetic course involves allenoate γ-addition to racemic aldehydes through a kinetic resolution to establish the required stereochemical framework as center and axial chirality and subsequent oxacyclization via gold catalysis to complete the (+)-xylogiblactone skeleton. Both key transformations proceed in a regio- and stereospecific manner. This outcome relies on finding an efficient synthetic method for racemic aldehydes as precursors for the kinetic resolution. Completion of the synthesis provides stereochemical clarification for (+)-xylogiblactones B and C.
Collapse
Affiliation(s)
- Aimin Zhang
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Gyungah Pak
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Suh Young Yu
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Sehui Yang
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Jimin Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
28
|
Chen W, Mao Y, Wang M, Ling F, Li C, Chen Z, Yao J. Rh(III)-catalyzed [4 + 1] cyclization of aryl substituted pyrazoles with cyclopropanols via C-H activation. Org Biomol Chem 2023; 21:775-782. [PMID: 36594518 DOI: 10.1039/d2ob02001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rhodium-catalyzed formal [4 + 1]-cyclization reaction of aryl substituted pyrazoles with cyclopropanols via C-H bond activation/cyclization processes to selectively construct a series of carbonyl functionalized pyrazolo[5,1-a]isoindoles is described. The reaction features good functional group compatibility and a broad substrate scope with respect to both cyclization components with up to 84% yields. Mechanistic studies indicated that the C-H cleavage might be the rate-determining step in this transformation.
Collapse
Affiliation(s)
- Wenxi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yan Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Min Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
29
|
Yang S, Zhou T, Yu X, Szostak M. Ag-NHC Complexes in the π-Activation of Alkynes. Molecules 2023; 28:molecules28030950. [PMID: 36770617 PMCID: PMC9920927 DOI: 10.3390/molecules28030950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Silver-NHC (NHC = N-heterocyclic carbene) complexes play a special role in the field of transition-metal complexes due to (1) their prominent biological activity, and (2) their critical role as transfer reagents for the synthesis of metal-NHC complexes by transmetalation. However, the application of silver-NHCs in catalysis is underdeveloped, particularly when compared to their group 11 counterparts, gold-NHCs (Au-NHC) and copper-NHCs (Cu-NHC). In this Special Issue on Featured Reviews in Organometallic Chemistry, we present a comprehensive overview of the application of silver-NHC complexes in the p-activation of alkynes. The functionalization of alkynes is one of the most important processes in chemistry, and it is at the bedrock of organic synthesis. Recent studies show the significant promise of silver-NHC complexes as unique and highly selective catalysts in this class of reactions. The review covers p-activation reactions catalyzed by Ag-NHCs since 2005 (the first example of p-activation in catalysis by Ag-NHCs) through December 2022. The review focuses on the structure of NHC ligands and p-functionalization methods, covering the following broadly defined topics: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization reactions. By discussing the role of Ag-NHC complexes in the p-functionalization of alkynes, the reader is provided with an overview of this important area of research and the role of Ag-NHCs to promote reactions that are beyond other group 11 metal-NHC complexes.
Collapse
|
30
|
Huang R, Wang M, Deng H, Xu J, Yan H, Zhao Y, Shi Z. Stereospecific nickel-catalyzed [4+2] heteroannulation of alkynes with aminophosphanes. SCIENCE ADVANCES 2023; 9:eade8638. [PMID: 36638162 PMCID: PMC9839338 DOI: 10.1126/sciadv.ade8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Enantioenriched phosphorus compounds play crucial roles in many fields ranging from catalyst to materials science to drug development. Despite advances in the construction of phosphacycles, incorporation of a P-chirogenic center into heterocycles remains challenging. Here, we report an effective method for the preparation of phosphacycles through nickel-catalyzed [4+2] heteroannulation of internal alkynes with aminophosphanes derived from o-haloanilines. Notably, chiral 2-λ5-phosphaquinolines can be prepared from P-stereogenic substrates via NH/PH tautomeric equilibrium without loss of stereochemical integrity. The strategy is found to exhibit a broad scope in terms of both reaction components, enabling modular construction of libraries of 2-λ5-phosphaquinolines with different steric and electronic properties for fine-tuning photophysical properties, where some of these compounds showed distinct fluorescence with high quantum yields. A series of mechanistic studies further shed light on the pathway of the heteroannulation and reasons for stereospecificity.
Collapse
Affiliation(s)
- Ronghui Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Deng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
31
|
Han B, Li W, Chen S, Zhang Z, Zhao X, Zhang Y, Zhu L. Recent Advances in Copper-Catalyzed Silyl Addition of Unsaturated Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
32
|
Tanpure SD, Kardile RD, Liu RS. Relay Zn( ii)- and Au( i)-catalyzed aziridination/cyclization/ring expansion sequence to form 3-benzazepine derivatives. Org Chem Front 2023. [DOI: 10.1039/d3qo00134b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The synthesis of 3H-benzo[d]azepine-2-carboxylates from 2-alkynylphenyl aldimines and α-diazo esters using Zn(ii) and Au(i) catalysts is described.
Collapse
|
33
|
Shi ZZ, Yu T, Ma H, Chi LX, You S, Deng C. Recent advances in radical cascade cyclization of 1,n-enynes with trifluoromethylating agents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Dobrynin SA, Gulman MM, Morozov DA, Zhurko IF, Taratayko AI, Sotnikova YS, Glazachev YI, Gatilov YV, Kirilyuk IA. Synthesis of Sterically Shielded Nitroxides Using the Reaction of Nitrones with Alkynylmagnesium Bromides. Molecules 2022; 27:molecules27217626. [PMID: 36364453 PMCID: PMC9654931 DOI: 10.3390/molecules27217626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Sterically shielded nitroxides, which demonstrate high resistance to bioreduction, are the spin labels of choice for structural studies inside living cells using pulsed EPR and functional MRI and EPRI in vivo. To prepare new sterically shielded nitroxides, a reaction of cyclic nitrones, including various 1-pyrroline-1-oxides, 2,5-dihydroimidazole-3-oxide and 4H-imidazole-3-oxide with alkynylmagnesium bromide wereused. The reaction gave corresponding nitroxides with an alkynyl group adjacent to the N-O moiety. The hydrogenation of resulting 2-ethynyl-substituted nitroxides with subsequent re-oxidation of the N-OH group produced the corresponding sterically shielded tetraalkylnitroxides of pyrrolidine, imidazolidine and 2,5-dihydroimidazole series. EPR studies revealed large additional couplings up to 4 G in the spectra of pyrrolidine and imidazolidine nitroxides with substituents in 3- and/or 4-positions of the ring.
Collapse
Affiliation(s)
- Sergey A. Dobrynin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Correspondence: (S.A.D.); (D.A.M.)
| | - Mark M. Gulman
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| | - Denis A. Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Correspondence: (S.A.D.); (D.A.M.)
| | - Irina F. Zhurko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Andrey I. Taratayko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| | - Yulia S. Sotnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Yurii I. Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, 630090 Novosibirsk, Russia
| | - Yuri V. Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Igor A. Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
Adhikari A, Bhakta S, Ghosh T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Corcoran JC, Guo R, Xia Y, Wang YM. Vinyl cation-mediated intramolecular hydroarylation of alkynes using pyridinium reagents. Chem Commun (Camb) 2022; 58:11523-11526. [PMID: 36149344 PMCID: PMC9588717 DOI: 10.1039/d2cc03794g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Once considered to be exotic species of limited synthetic utility, vinyl cations have recently been shown to be highly versatile intermediates in a variety of processes. Here, we report a method for the synthesis of aryl-substituted benzocycloheptenes and -hexenes using the hydrotriflate salt of an electron-poor pyridine as a uniquely efficient proton source for a vinyl cation mediated Friedel-Crafts cyclization. The mild conditions made possible by this reagent allowed a range of simple and functionalized alkynes bearing pendant aryl groups to serve as suitable substrates for this scalable and convenient protocol.
Collapse
Affiliation(s)
- James C Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Rui Guo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yue Xia
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
37
|
Banjare SK, Mahulkar PS, Nanda T, Pati BV, Najiar LO, Ravikumar PC. Diverse reactivity of alkynes in C-H activation reactions. Chem Commun (Camb) 2022; 58:10262-10289. [PMID: 36040423 DOI: 10.1039/d2cc03294e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkynes occupy a prominent role as a coupling partner in the transition metal-catalysed directed C-H activation reactions. Due to low steric requirements and linear geometry, alkynes can effectively coordinate with metal d-orbitals. This makes alkynes one of the most successful coupling partners in terms of the number of useful transformations. Remarkably, by changing the reaction conditions and transition-metals from 5d to 3d, the pattern of reactivity of alkynes also changes. Due to the varied reactivity of alkynes, such as alkenylation, annulation, alkylation, and alkynylation, they have been extensively used for the synthesis of valuable organic molecules. Despite enormous explorations with alkynes, there are still a lot more possible ways by which they can be made to react with M-C bonds generated through C-H activation. Practically there is no limit for the creative use of this approach. In particular with the development of new high and low valent first-row metal catalysts, there is plenty of scope for this chemistry to evolve as one of the most explored areas of research in the coming years. Therefore, a highlight article about alkynes is both timely and useful for synthetic chemists working in this area. Herein, we have highlighted the diverse reactivity of alkynes with various transition metals (Ir, Rh, Ru, Pd, Mn, Fe, Co, Ni, Cu) and their applications, along with some of our thoughts on future prospects.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pranav Shridhar Mahulkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
38
|
Niu R, Zhao J, Mou Q, Zhao R, Zhang J, Wang M, Sun B. Cp
X
Co (III)‐catalyzed selective C‐H alkenylation of indoles with ethynylethylene carbonates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruihan Niu
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Jiakai Zhao
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Qi Mou
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Ruyuan Zhao
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Jing Zhang
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Meiqi Wang
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Bo Sun
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| |
Collapse
|
39
|
Shibata T, Iwaki T, Ito M. Ir‐Catalyzed Intramolecular Cyclization of 2‐Alkynyl Diaryl Sulfides for the Selective Synthesis of Sulfur‐Containing Polycyclic Compounds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Mamoru Ito
- Advanced Science & Engineering, Waseda University JAPAN
| |
Collapse
|
40
|
Dawood KM, Alaasar M. Transition Metals Catalyzed Heteroannulation Reactions in Aqueous Medium. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamal M. Dawood
- Cairo University Faculty of Science Chemistry Giza street 12613 Giza EGYPT
| | - Mohamed Alaasar
- Martin Luther University Halle-Wittenberg Faculty I of Natural Science - Biological Science: Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat I Biowissenschaften Institute of Chemistry Halle GERMANY
| |
Collapse
|
41
|
Moghadam Farid S, Seifinoferest B, Gholamhosseyni M, Larijani B, Mahdavi M. Modern metal-catalyzed and organocatalytic methods for synthesis of coumarin derivatives: a review. Org Biomol Chem 2022; 20:4846-4883. [PMID: 35642609 DOI: 10.1039/d2ob00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin is an important pharmaceutical structural motif, abundantly found in numerous commonly used drugs. Compounds containing this core show a broad spectrum of medicinal properties and biological activities. The increasing importance and wide usages of coumarin derivatives have drawn attention to its synthetic methods, among which metal-catalyzed and organocatalytic methods have proved the most effective. Several metal-catalyzed and/or organocatalytic synthetic strategies for coumarin have been investigated and reported in recent decades. This review focuses on more recent reports on catalysis methods for synthesizing coumarin and coumarin-like structures (including light-mediated methods and nano-catalysts), exploring the mechanistic aspects, simplicity, efficiency, repeatability, and other advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnoush Seifinoferest
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maral Gholamhosseyni
- Department of Chemistry, College of Chemistry, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
43
|
Qi SL, Liu YP, Li Y, Luan YX, Ye M. Ni-catalyzed hydroarylation of alkynes with unactivated β-C(sp 2)-H bonds. Nat Commun 2022; 13:2938. [PMID: 35618702 PMCID: PMC9135730 DOI: 10.1038/s41467-022-30367-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Hydroarylation of alkynes with unactivated C(sp2)-H bonds via chelated C-H metalation mainly occurs at γ-position to the coordinating atom of directing groups via stable 5-membered metallacycles, while β-C(sp2)-H bond-involved hydroarylation has been a formidable challenge. Herein, we used a phosphine oxide-ligated Ni-Al bimetallic catalyst to enable β-C-H bond-involved hydroarylations of alkynes via a rare 7-membered nickelacycle.
Collapse
Affiliation(s)
- Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Peng Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
44
|
Cera G, Maestri G. Palladium/Brønsted Acid Catalysis for Hydrofunctionalizations of Alkynes: from Tsuji‐Trost Allylations to Stereoselective Methodologies. ChemCatChem 2022. [DOI: 10.1002/cctc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gianpiero Cera
- Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| |
Collapse
|
45
|
Zhai YL, Zhou H, Liu QQ, Leng BR, Zhang Z, Li JZ, Wang DC, Zhu YL. Photocatalytic Markovnikov-type addition and cyclization of terminal alkynes leading to 4-sulfonyl quinoline-2(1 H)-ones. Chem Commun (Camb) 2022; 58:5112-5115. [PMID: 35377376 DOI: 10.1039/d2cc01169g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and expedient photocatalytic protocol for the construction of quinolin-2(1H)-ones via Markovnikov-type sulfonylation/6-endo-trig cyclization/selective C(O)-CF3 bond cleavage starting from N-alkyl-N-(2-ethynylphenyl)-2,2,2-trifluoroacetamides and sulfinic acids has been developed. It is as an unprecedented protocol for the preparation of 4-sulfonylquinoline-2(1H)-ones with high efficiency, mild reaction conditions, acceptable yields and a wide range of substrates.
Collapse
Affiliation(s)
- Yu-Lin Zhai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Hui Zhou
- Institute of Materia Medica, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qing-Quan Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Bo-Rong Leng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zixian Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Jia-Zhuo Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - De-Cai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. .,Institute of Materia Medica, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi-Long Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. .,Institute of Materia Medica, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
46
|
Current Trends on C–C Bond Formation Through Regioselective Hydroarylation of Alkynes and Alkenes Using Metal Free Catalysts. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Wang ZJ, Zheng Y, Tang K, Guan JP, Ye ZP, He JT, Xiao JA, Chen K, Xiang HY, Yang H. Photoinduced Construction of a Benzothienopyridine- S,S-dioxide Framework Enabled by Polychloropyridyl Multifunctional Motifs. J Org Chem 2022; 87:4732-4741. [PMID: 35317557 DOI: 10.1021/acs.joc.2c00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reported herein is a visible-light-induced, catalyst-free intramolecular cyclization of 4-phenylsulfonyl-2,3,5,6-tetrachloropyridine, leading to rapid assembly of a series of unprecedented benzo[4,5]thieno[3,2-c]pyridine 5,5-dioxide scaffolds under mild conditions. The rational introduction of a perchloropyridin-4-yl module significantly facilitated this photoinduced process and offers a versatile platform for broad structural variation. Mechanistic studies revealed that a newly identified charge-transfer complex with carbonate is crucial to this photoinduced process.
Collapse
Affiliation(s)
- Zhu-Jun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
48
|
Bai X, Guo Y, Zhao Z. Silicotungstic acid-derived WO3 composited with ZrO2 supported on SBA-15 as a highly efficient mesoporous solid acid catalyst for the alkenylation of p-xylene with phenylacetylene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
One-pot Sonogashira–Hydroarylation reaction catalyzed by anionic palladium complexes in an aqueous medium. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Burke A, Moutayakine A. Accessing medicinally relevant O‐benzofused heterocycles through C‐X activation: Recent trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anthony Burke
- University of Evora Chemistry Rua Romão Ramalho, 59 7000 Evora PORTUGAL
| | - Amina Moutayakine
- University of Evora Institute for Advanced Studies and Research: Universidade de Evora Instituto de Investigacao e Formacao Avancada LAQV-Requimte PORTUGAL
| |
Collapse
|