1
|
Boniface PK, Ferreira EI. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 2019; 33:2473-2517. [PMID: 31441148 DOI: 10.1002/ptr.6383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually with over 500,000 deaths. Among the NTDs, some of the most severe consist of leishmaniasis, Chagas disease, and dengue. The impact of the combined NTDs closely rivals that of malaria. According to the World Health Organization, 216 million cases of malaria were reported in 2016 with 445,000 deaths. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Flavonoids are a class of compounds that has been the subject of considerable scientific interest. New developments of flavonoids have made promising advances for the potential treatment of malaria, leishmaniasis, Chagas disease, and dengue, with less toxicity, high efficacy, and improved bioavailability. This review summarizes the current standings of the use of flavonoids to treat malaria and neglected diseases such as leishmaniasis, Chagas disease, and dengue. Natural and synthetic flavonoids are leading compounds that can be used for developing antiprotozoal and antiviral agents. However, detailed studies on toxicity, pharmacokinetics, and mechanisms of action of these compounds are required to confirm the in vitro pharmacological claims of flavonoids for pharmaceutical applications. HIGHLIGHTS: In the current review, we have tried to compile recent discoveries on natural and synthetic flavonoids as well as their implication in the treatment of malaria, leishmaniasis, Chagas disease, and dengue. A total of 373 (220 natural and 153 synthetic) flavonoids have been evaluated for antimalarial, antileishmanial, antichagasic, and antidengue activities. Most of these flavonoids showed promising results against the above diseases. Reports on molecular modeling of flavonoid compounds to the disease target indicated encouraging results. Flavonoids can be prospected as potential leads for drug development; however, more rigorously designed studies on toxicity and pharmacokinetics, as well as the quantitative structure-activity relationship studies of these compounds, need to be addressed.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Verçoza BRF, Godinho JLP, de Macedo-Silva ST, Huber K, Bracher F, de Souza W, Rodrigues JCF. KH-TFMDI, a novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis. Apoptosis 2018; 22:1169-1188. [PMID: 28685254 DOI: 10.1007/s10495-017-1397-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 μM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.
Collapse
Affiliation(s)
- Brunno Renato Farias Verçoza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Joseane Lima Prado Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Sara Teixeira de Macedo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Kilian Huber
- Departament of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Departament of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil. .,Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil. .,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Jiang Y, Liu J, Chen D, Yan L, Zheng W. Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic Potential. Trends Pharmacol Sci 2017; 38:459-472. [PMID: 28389129 DOI: 10.1016/j.tips.2017.01.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
The β-NAD+-dependent Nε-acyl-lysine deacylation reaction catalyzed by sirtuin family members has been increasingly demonstrated to be important in regulating multiple crucial cellular processes and has also been proposed to be a therapeutic target for multiple human diseases. Accordingly, its inhibitors have been actively pursued over the past few years. In addition, we have also seen the pharmacological assessment of sirtuin inhibitory compounds, although to a lesser extent. In this review, we first discuss how sirtuin inhibitors were discovered with the use of various approaches. We then follow with a discussion of pharmacological studies using sirtuin inhibitors. Our aim here is to set a stage for developing future superior sirtuin inhibitors and for an expanded effort in exploiting inhibitors to explore and/or validate the therapeutic potential stemming from the inhibition of the sirtuin-catalyzed deacylation reaction.
Collapse
Affiliation(s)
- Yanhong Jiang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Jiajia Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Di Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Lingling Yan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
5
|
Wu X, Cao N, Fenech M, Wang X. Role of Sirtuins in Maintenance of Genomic Stability: Relevance to Cancer and Healthy Aging. DNA Cell Biol 2016; 35:542-575. [DOI: 10.1089/dna.2016.3280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Michael Fenech
- Genome Health and Personalized Nutrition, Commonwealth Scientific and Industrial Research Organization Food and Nutrition, Adelaide, South Australia, Australia
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Characterization of Trypanosoma cruzi Sirtuins as Possible Drug Targets for Chagas Disease. Antimicrob Agents Chemother 2015; 59:4669-79. [PMID: 26014945 DOI: 10.1128/aac.04694-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Acetylation of lysine is a major posttranslational modification of proteins and is catalyzed by lysine acetyltransferases, while lysine deacetylases remove acetyl groups. Among the deacetylases, the sirtuins are NAD(+)-dependent enzymes, which modulate gene silencing, DNA damage repair, and several metabolic processes. As sirtuin-specific inhibitors have been proposed as drugs for inhibiting the proliferation of tumor cells, in this study, we investigated the role of these inhibitors in the growth and differentiation of Trypanosoma cruzi, the agent of Chagas disease. We found that the use of salermide during parasite infection prevented growth and initial multiplication after mammalian cell invasion by T. cruzi at concentrations that did not affect host cell viability. In addition, in vivo infection was partially controlled upon administration of salermide. There are two sirtuins in T. cruzi, TcSir2rp1 and TcSir2rp3. By using specific antibodies and cell lines overexpressing the tagged versions of these enzymes, we found that TcSir2rp1 is localized in the cytosol and TcSir2rp3 in the mitochondrion. TcSir2rp1 overexpression acts to impair parasite growth and differentiation, whereas the wild-type version of TcSir2rp3 and not an enzyme mutated in the active site improves both. The effects observed with TcSir2rp3 were fully reverted by adding salermide, which inhibited TcSir2rp3 expressed in Escherichia coli with a 50% inhibitory concentration (IC50) ± standard error of 1 ± 0.5 μM. We concluded that sirtuin inhibitors targeting TcSir2rp3 could be used in Chagas disease chemotherapy.
Collapse
|
7
|
Ma S, Zeng G, Fang D, Wang J, Wu W, Xie W, Tan S, Zheng K. Studies of N(9)-arenthenyl purines as novel DFG-in and DFG-out dual Src/Abl inhibitors using 3D-QSAR, docking and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2014; 11:394-406. [PMID: 25406390 DOI: 10.1039/c4mb00350k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the development of Src/Abl (c-Src/Bcr-Abl tyrosine kinases) dual inhibitors has attracted considerable attention from the research community for treatment of malignancies. In order to explore the different structural features impacting the Src and Abl inhibitory activities of N(9)-arenethenyl purines and to investigate the molecular mechanisms of ligand-receptor interactions, a molecular modeling study combining the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations was performed. The obtained CoMFA (comparative molecular field analysis) models exhibited satisfactory internal and external predictability. The plots of the CoMFA fields could be used to investigate the structural differences between DFG-in (targeting the active enzyme conformation) and DFG-out (targeting the inactive enzyme conformation) inhibitors. The key amino acid residues were identified by docking studies, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies gave a good correlation with the experimental determined activities. In an energetic analysis, the MM-PBSA (molecular mechanics Poisson-Boltzmann surface) energy decomposition revealed that the van der Waals interactions were the major driving force for the binding of the DFG-in and DFG-out compounds to Src and Abl, especially the hydrophobic interactions between ligands and residues Ala403/380, Asp404/381, and Phe405/382 in DFG-out Src and Abl complexes. They also help to stabilize the DFG-out conformations. These results can offer useful references for designing novel potential DFG-in and DFG-out dual Src/Abl inhibitors.
Collapse
Affiliation(s)
- Shaojie Ma
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lv M, Ma S, Tian Y, Zhang X, Lv W, Zhai H. Computational studies on the binding mechanism between triazolone inhibitors and Chk1 by molecular docking and molecular dynamics. MOLECULAR BIOSYSTEMS 2014; 11:275-86. [PMID: 25372494 DOI: 10.1039/c4mb00449c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chk1, a serine/threonine protein kinase that participates in transducing DNA damage signals, is an attractive target due to its involvement in tumor initiation and progression. As a novel Chk1 inhibitor, the triazolone's bioactivity mechanism is not clear. In this study, we carried out an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations to identify the key factors necessary for the bioactivities. With the aim of discerning the structural features that affect the inhibitory activity of triazolones, MK-8776, a Chk1 inhibitor that reached the clinical stage, was also used as a reference for simulations. A comparative analysis of the triazolone inhibitors at the molecular level offers valuable insight into the structural and energetic properties. A general feature is that all the studied inhibitors bind in the pocket characterized by residues Leu14, Val22, Ala35, Glu84, Tyr85, Cys86, and Leu136 of Chk1. Moreover, introducing hydrophobic groups into triazolone inhibitors is favorable for binding to Chk1, which is corroborated by residue Leu136 with a relatively large difference in the contribution between MK-8776 and five triazolones to the total binding free energies. A hydrogen bond between the polar hydrogen atoms at R1 and Cys86 can facilitate proper placement of the inhibitor in the binding pocket of Chk1 that favors binding. However, the introduction of hydrophilic groups into the R2 position diminishes binding affinity. The information provided by this research is of benefit for further rational design of novel promising inhibitors of Chk1.
Collapse
Affiliation(s)
- Min Lv
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
9
|
Computational Studies on Sirtuins from Trypanosoma cruzi: Structures, Conformations and Interactions with Phytochemicals. PLoS Negl Trop Dis 2014; 8:e2689. [PMID: 24551254 PMCID: PMC3923677 DOI: 10.1371/journal.pntd.0002689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background The silent-information regulator 2 proteins, otherwise called sirtuins, are currently considered as emerging anti-parasitic targets. Nicotinamide, a pan-sirtuin inhibitor, is known to cause kinetoplast alterations and the arrested growth of T. cruzi, the protozoan responsible for Chagas disease. These observations suggested that sirtuins from this parasite (TcSir2rp1 and TcSir2rp3) could play an important role in the regulation of the parasitic cell cycle. Thus, their inhibition could be exploited for the development of novel anti-trypanosomal compounds. Methods Homology modeling was used to determine the three-dimensional features of the sirtuin TcSir2rp1 from T. cruzi. The apo-form of human SIRT2 and the same structure solved in complex with its co-substrate NAD+ allowed the modeling of TcSir2rp1 in the open and closed conformational states. Molecular docking studies were then carried out. A library composed of fifty natural and diverse compounds that are known to be active against this parasite, was established based on the literature and virtually screened against TcSir2rp1 and TcSir2rp3, which was previously modeled by our group. Results In this study, two conformational states of TcSir2rp1 were described for the first time. The molecular docking results of compounds capable of binding sirtuins proved to be meaningful when the closed conformation of the protein was taken into account for calculations. This specific conformation was then used for the virtual screening of antritrypanosomal phytochemicals against TcSir2rp1 and TcSir2rp3. The calculations identified a limited number of scaffolds extracted from Vismia orientalis, Cussonia zimmermannii, Amomum aculeatum and Anacardium occidentale that potentially interact with both proteins. Conclusions The study provided reliable models for future structure-based drug design projects concerning sirtuins from T. cruzi. Molecular docking studies highlighted not only the advantages of performing in silico interaction studies on their closed conformations but they also suggested the potential mechanism of action of four phytochemicals known for their anti-trypanosomal activity in vitro. T. cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies rely only on a very small number of drugs, most of which are inadequate because of their severe host toxicity or because of their susceptibility to drug-resistance mechanisms. To determine efficient therapeutic alternatives, the identification of new biotargets and detailed knowledge of their structures are essential. Sirtuins from T. cruzi have been recently considered as promising targets for the development of new treatments for Chagas disease. Inhibition of their activity has been shown to significantly interfere with the life cycle of the parasite. T. cruzi possesses genes encoding two sirtuin-like proteins, TcSIR2rp1 and TcSIR2rp3. The structures of these enzymes were theoretically elucidated in this work, which also focused on the impact of their possible conformational states on computational interaction studies. A small library of phytochemicals that are active against the parasite was built and screened against the most meaningful conformations, identifying a restricted number of scaffolds that potentially interact with the modeled proteins. For these hits, a mechanism of action related to interactions with sirtuins was proposed.
Collapse
|