1
|
Fang M, Li H, Xie X, Wang H, Jiang Y, Li T, Zhang B, Jiang X, Cao Y, Zhang R, Zhang D, Zhao Y, Zhu L, Chen X, Yang Y. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors. Biosens Bioelectron 2023; 235:115411. [PMID: 37236014 DOI: 10.1016/j.bios.2023.115411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Fluorescent RNA (FR)-based genetically encoded sensors have been engineered to detect various essential metabolites in living systems. However, the unfavorable characteristics of FR impede sensor applications. Here, we describe a strategy for converting Pepper fluorescent RNA into a series of fluorescent sensors to detect their cognate targets both in vitro and in live cells. Compared to previously developed FR-based sensors, Pepper-based sensors exhibited expanded emission of up to 620 nm and markedly improved cellular brightness, allowing robust and real-time monitoring of the pharmacologic-triggered dynamics changes in the intracellular level of S-adenosylmethionine (SAM) and the optogenetic manipulated protein translocation in live mammalian cells. Furthermore, signal amplification in fluorescence imaging of the target was achieved using the CRISPR-display strategy by incorporating a Pepper-based sensor into the sgRNA scaffold. Together, these results demonstrate that Pepper can be readily developed into high-performance FR-based sensors to detect various cellular targets.
Collapse
Affiliation(s)
- Mengyue Fang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Huiwen Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xin Xie
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Hui Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Ying Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Tianyu Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Bibi Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xin Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yueyang Cao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Rui Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Dasheng Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
6
|
Zhou H, Zheng C, Su J, Chen B, Fu Y, Xie Y, Tang Q, Chou SH, He J. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci Rep 2016; 6:20871. [PMID: 26892868 PMCID: PMC4759541 DOI: 10.1038/srep20871] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
c-di-GMP riboswitches are structured RNAs located in the 5'-untranslated regions (5'-UTRs) of mRNAs that regulate expression of downstream genes in response to changing concentrations of the second messenger c-di-GMP. We discovered three complete c-di-GMP riboswitches (Bc3, Bc4 and Bc5 RNA) with similar structures, which are arranged in tandem to constitute a triple-tandem (Bc3-5 RNA) riboswitch in the 5'-UTR of the cspABCDE mRNA in Bacillus thuringiensis subsp. chinensis CT-43. Our results showed that this natural triple-tandem riboswitch controlled the expression of the reporter gene more stringently and digitally than the double-tandem or single riboswitch. A sandwich-like dual-fluorescence reporter was further constructed by fusing the Bc3-5 RNA gene between the two fluorescence protein genes amcyan and turborfp. This reporter strain was found to exhibit detectable fluorescence color changes under bright field in response to intracellular c-di-GMP level altered by induced expression of diguanylate cyclase (DGC) PleD. Using this system, two putative membrane-bound DGCs from B. thuringiensis and Xanthomonas oryzae were verified to be functional by replacing pleD with the corresponding DGC genes. This report represented the first native triple-tandem riboswitch that was applied to serve as a riboswitch-based dual-fluorescence reporter for the efficient and convenient verification of putative DGC activity in vivo.
Collapse
Affiliation(s)
- Hang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Bo Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqun Xie
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|