1
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
2
|
Wei R, Yang J, Cheng CW, Ho WI, Li N, Hu Y, Hong X, Fu J, Yang B, Liu Y, Jiang L, Lai WH, Au KW, Tsang WL, Tse YL, Ng KM, Esteban MA, Tse HF. CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson's disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100389. [PMID: 34877514 PMCID: PMC8633686 DOI: 10.1016/j.jhepr.2021.100389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Background & Aims Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-function mutations in ATP7B, which encodes a copper-transporting protein. It is characterized by excessive copper deposition in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular transplantation therapy in WD. Methods We first compared the in vitro phenotype and cellular function of ATP7B before and after gene correction using CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) in iHeps (derived from patients with WD) which were homozygous for the ATP7B R778L mutation (ATP7BR778L/R778L). Next, we evaluated the in vivo therapeutic potential of cellular transplantation of WD gene-corrected iHeps in an immunodeficient WD mouse model (Atp7b-/-/ Rag2-/-/ Il2rg-/-; ARG). Results We successfully created iPSCs with heterozygous gene correction carrying 1 allele of the wild-type ATP7B gene (ATP7BWT/-) using CRISPR/Cas9 and ssODNs. Compared with ATP7BR778L/R778L iHeps, gene-corrected ATP7BWT/- iHeps restored in vitro ATP7B subcellular localization, its subcellular trafficking in response to copper overload and its copper exportation function. Moreover, in vivo cellular transplantation of ATP7BWT/- iHeps into ARG mice via intra-splenic injection significantly attenuated the hepatic manifestations of WD. Liver function improved and liver fibrosis decreased due to reductions in hepatic copper accumulation and consequently copper-induced hepatocyte toxicity. Conclusions Our findings demonstrate that gene-corrected patient-specific iPSC-derived iHeps can rescue the in vitro and in vivo disease phenotypes of WD. These proof-of-principle data suggest that iHeps derived from gene-corrected WD iPSCs have potential use as an autologous ex vivo cell source for in vivo therapy of WD as well as other inherited liver disorders. Lay summary Gene correction restored ATP7B function in hepatocytes derived from induced pluripotent stem cells that originated from a patient with Wilson’s disease. These gene-corrected hepatocytes are potential cell sources for autologous cell therapy in patients with Wilson’s disease. Correction of the ATP7B R778L mutation restored the subcellular localization of ATP7B in iHeps. The copper exportation capability of ATP7B was restored in gene-corrected iHeps. Gene-corrected iHeps reduced hepatic copper accumulation and copper-induced hepatic toxicity in mice with Wilson’s disease. Gene-corrected iHeps are potential ex vivo cell sources for therapy in Wilson’s disease.
Collapse
Key Words
- AFP, alpha-fetoprotein
- ALB, albumin
- ATP7B, ATPase copper transporting beta
- ATPase copper transporting beta polypeptide (ATP7B)
- Clustered regularly interspaced palindromic repeats (CRISPR)/Cas9
- EB, embryoid body
- RFLP, restriction fragment length polymorphism
- Single-stranded Oligodeoxynucleotide (ssODN)
- TGN, trans-Golgi network
- WD, Wilson’s disease
- Wilson’s disease
- cell therapy
- gene correction
- iHep(s), iPSC-derived hepatocyte(s)
- iPSC, induced pluripotent stem cell
- iPSC-derived hepatocytes (iHeps)
- induced pluripotent stem cell (iPSC)
- sgRNA, single guide RNA
- ssODN, single-stranded oligodeoxynucleotide
Collapse
Affiliation(s)
- Rui Wei
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
| | - Jiayin Yang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Chi-Wa Cheng
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Wai-In Ho
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Na Li
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Yang Hu
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Xueyu Hong
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jian Fu
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Bo Yang
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Yuqing Liu
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Lixiang Jiang
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Wing-Hon Lai
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Ka-Wing Au
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Wai-Ling Tsang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiu-Lam Tse
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Kwong-Man Ng
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
| | - Miguel A. Esteban
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China
- Corresponding authors. Address: Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China; Tel.: (852) 2255-4694, fax: (852) 2818-6304.
| | - Hung-Fat Tse
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
- Heart and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Corresponding authors. Address: Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China; Tel.: (852) 2255-4694, fax: (852) 2818-6304.
| |
Collapse
|
4
|
Reed E, Lutsenko S, Bandmann O. Animal models of Wilson disease. J Neurochem 2018; 146:356-373. [PMID: 29473169 PMCID: PMC6107386 DOI: 10.1111/jnc.14323] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long-Evans Cinnamon rat, the toxic-milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B-deficiency.
Collapse
Affiliation(s)
- Emily Reed
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| |
Collapse
|
5
|
Yan HB, Zhang Y, Cen JM, Wang X, Gan BL, Huang JC, Li JY, Song QH, Li SH, Chen G. Expression of microRNA-99a-3p in Prostate Cancer Based on Bioinformatics Data and Meta-Analysis of a Literature Review of 965 Cases. Med Sci Monit 2018; 24:4807-4822. [PMID: 29997385 PMCID: PMC6069561 DOI: 10.12659/msm.908057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) have a role as biomarkers in human cancer. The aim of this study was to use bioinformatics data, and review of cases identified from the literature, to investigate the role of microRNA-99a-3p (miR-99a-3p) in prostate cancer, including the identification of its target genes and signaling pathways. MATERIAL AND METHODS Meta-analysis from a literature review included 965 cases of prostate cancer. Bioinformatics databases interrogated for miR-99a-3p in prostate cancer included The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and ArrayExpress. Twelve computational predictive algorithms were developed to integrate miR-99a-3p target gene prediction data. Bioinformatics analysis data from Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analysis were used investigate the possible pathways and target genes for miR-99a-3p in prostate cancer. RESULTS TCGA data showed that miR-99a was down-regulated in prostate cancer when compared with normal prostate tissue. Receiver-operating characteristic (ROC) curve area under the curve (AUC) for miR-99a-3p was 0.660 (95% CI, 0.587-0.732) or a moderate level of discriminations. Pathway analysis showed that miR-99a-3p was associated with the Wnt and vascular endothelial growth factor (VEGF) signaling pathways. The PPP3CA and HYOU1 genes, selected from the PPI network, were highly expressed in prostate cancer tissue compared with normal prostate tissue, and negatively correlated with the expression of miR-99a-3p. CONCLUSIONS In prostate cancer, miR-99a-3p expression was associated with the Wnt and VEGF signaling pathways, which might inhibit the expression of PPP3CA or HYOU1.
Collapse
Affiliation(s)
- Hai-Biao Yan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jie-Mei Cen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, China (mainland)
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jia-Cheng Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jia-Yi Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qian-Hui Song
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
6
|
Seo GH, Kim YM, Oh SH, Chung SJ, Choi IH, Kim GH, Yum MS, Choi JH, Kim KM, Ko TS, Lee BH, Yoo HW. Biochemical and molecular characterisation of neurological Wilson disease. J Med Genet 2018; 55:587-593. [DOI: 10.1136/jmedgenet-2017-105214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022]
Abstract
BackgroundTo identify biochemical and genetic features that characterise neurological Wilson disease as a distinct disease subgroup.MethodsDetailed biochemical profiles and genotypic characteristics of neurological (86 patients) and hepatic subgroups (233 patients) from 368 unrelated Korean families were analysed.ResultsCompared with patients in the hepatic subgroup, patients in the neurological subgroup had a later age at onset, a higher proportion with Kayser-Fleischer rings and higher serum creatinine levels, and a lower proportion with favourable outcome (62% vs 80%, P<0.016). At diagnosis, the neurological subgroup had lower serum ceruloplasmin (3.1±2.1 mg/dL vs 4.2±3.2 mg/dL, P<0.001), total copper (26.4±13.8 µg/dL vs 35.8±42.4 µg/dL, P=0.005), free copper (17.2±12.5 µg/dL vs 23.5±38.2 µg/dL, P=0.038) and urinary copper (280.9±162.9 µg/day vs 611.1±1124.2 µg/day, P<0.001) levels. Serum aspartate aminotransferase, alanine aminotransferase, gamma glutamyltransferase and total bilirubin levels, as well as prothrombin time, were also lower in the neurological subgroup. Liver cirrhosis was more common but mostly compensated in the neurological subgroup. Frameshift, nonsense or splice-site ATP7B mutations and mutations in transduction or ATP hinge domains (2.4% vs 23.1%, P=0.006) were less common in the neurological subgroup.ConclusionThe neurological subgroup had distinct clinical, biochemical and genetic profiles. Further studies are required to identify the factors, with or without association with copper metabolism, underlying the neurological presentation for which treatment needs to be targeted to improve the clinical outcome of this subgroup.
Collapse
|