1
|
Zhang M, Tan Q, Gonca S, Lan M, Qian BZ, Chen X, Radacsi N. Carrier-Free Cisplatin-Dactolisib Nanoparticles for Enhanced Synergistic Antitumor Efficacy. ACS Biomater Sci Eng 2025; 11:1456-1471. [PMID: 39992316 PMCID: PMC11897951 DOI: 10.1021/acsbiomaterials.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Cisplatin (CDDP) is one of the most commonly used chemotherapeutic agents for solid tumors and hematologic malignancy. However, its therapeutic outcomes have remained unsatisfactory due to severe side effects, a short elimination half-life, the emergence of drug resistance, and the induction of metastasis. Combination with other chemotherapeutic agents has been proposed as one strategy to address the drawbacks of CDDP-based therapy. Therefore, this study aimed to boost the antitumor efficacy of cisplatin (CDDP) with a PI3K/mTOR dual inhibitor, dactolisib (BEZ), via a carrier-free codelivery system based on the self-assembly of the coordinated CDDP-BEZ. The synthesized CDDP-BEZ nanoparticles (NPs) possess sensitive pH-responsiveness, facilitating the delivery of both drugs to cancer cells. CDDP-BEZ NPs specifically enhanced cytotoxicity in cancer cells due to the synergy between cisplatin and dactolisib, resulting in augmented DNA damage, activation of mitochondria-dependent apoptosis, and increased inhibition on the PI3K/mTOR signaling axis. The inhibition of tumor migration and metastasis by CDDP-BEZ NPs was observed both in vitro and in vivo. Our data suggest that CDDP-BEZ NPs could serve as a safe and effective platform to maximize the synergy between both drugs in combating cancer, presenting a strategy to promote the therapeutic efficacy of platinum-based chemotherapeutic agents by combining them with PI3K inhibitors.
Collapse
Affiliation(s)
- Mei Zhang
- School
of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL, U.K.
| | - Qiuxia Tan
- Key
Laboratory of Hunan Province for Water Environment and Agriculture
Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Sevil Gonca
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL, U.K.
| | - Minhuan Lan
- Key
Laboratory of Hunan Province for Water Environment and Agriculture
Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bin-Zhi Qian
- Medical
Research Council Centre for Reproductive Health, College of Medicine
and Veterinary Medicine, Queen’s
Medical Research Institute University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, U.K.
- Fudan
University Shanghai Cancer Center, Department of Oncology, Shanghai
Medical College, The Human Phenome Institute, Zhangjiang-Fudan International
Innovation Center, Fudan University, Shanghai 200433, China
| | - Xianfeng Chen
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL, U.K.
| | - Norbert Radacsi
- School
of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL, U.K.
| |
Collapse
|
2
|
Shi H, Ward-Deitrich C, Ponte F, Sicilia E, Goenaga-Infante H, Sadler PJ. Photosubstitution and photoreduction of a diazido platinum(IV) anticancer complex. Dalton Trans 2024; 53:13044-13054. [PMID: 39028324 DOI: 10.1039/d4dt01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The hyphenation of HPLC with its high separation ability and ICP-MS with its excellent sensitivity, allows the analysis of Pt drugs in biological samples at the low nanomolar concentration levels. On the other hand, LC-MS provides molecular structural confirmation for each species. Using a combination of these methods, we have investigated the speciation of the photoactive anticancer complex diazido Pt(IV) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] (FM-190) in aqueous solution and biofluids at single-digit nanomolar concentrations before and after irradiation. FM-190 displays high stability in human blood plasma in the dark at 37 °C. Interestingly, the polyhydroxido species [{PtIV(py)2(OH)4} + Na]+ and [{PtIV(py)2(N3)(OH)3} + Na]+ resulting from the replacement of azido ligands, as determined by LC-MS, were the major products after photoirradiation of FM-190 with blue light (463 nm). This finding suggests that such photosubstituted Pt(IV) tri- and tetra-hydroxido species could play important roles in the biological activity of this anticancer complex. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations show that these Pt(IV) species arising from FM-190 in aqueous media can be formed directly from a singlet excited state. The results highlight how speciation analysis (metallomics) can shed light on photoactivation pathways for FM-190 and formation of potential excited-state pharmacophores. The ability to detect and identify photoproducts at physiologically-relevant concentrations in cells and tissues will be important for preclinical development studies of this class of photoactivatable platinum drugs.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Christian Ward-Deitrich
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex TW11 0LY, UK.
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Cs, Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Cs, Italy.
| | - Heidi Goenaga-Infante
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex TW11 0LY, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Precise quantitative evaluation of pharmacokinetics of cisplatin using a radio-platinum tracer in tumor-bearing mice. Nucl Med Commun 2022; 43:1121-1127. [PMID: 36120823 PMCID: PMC9575570 DOI: 10.1097/mnm.0000000000001614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The platinum-based antineoplastic drug cisplatin is commonly used for chemotherapy in clinics. This work aims to demonstrate a radio-platinum tracer is useful for precisely quantifying small amounts of platinum in pharmacokinetics studies. METHODS A cisplatin radiotracer (radio-cisplatin) was synthesized, and a comprehensive evaluation of cisplatin over 7 days after its intravenous injection into nude mice bearing a subcutaneous lung tumor (H460) was conducted. RESULTS A biphasic retention curve in the whole body and blood was observed [ T1/2 (α) = 1.14 h, T1/2 (β) = 5.33 days for the whole body, and T1/2 (α) = 23.9 min, T1/2 (β) = 4.72 days for blood]. The blood concentration decreased within 1 day after injection. Most of the intact cisplatin was excreted via the kidneys in the early time points, and a small part was distributed in tissues including tumors. The plasma protein binding rate of cisplatin increased rapidly after injection, and the protein-bound cisplatin remained in the blood longer than intact cisplatin. The peak uptake in H460 tumors was 4.7% injected dose per gram at 15 min after injection, and the area under the curve (AUC 0-7 days ) was approximately one-half to one-third of the AUC 0-7 days in the kidneys, liver, and bone, where some toxicity is observed in humans. CONCLUSION The radio-platinum tracer revealed the highly quantitative biodistribution of cisplatin, providing insights into the properties of cisplatin, including its adverse effects. The tracer enables a precise evaluation of pharmacokinetics for platinum-based drugs with high sensitivity.
Collapse
|
4
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem 2022; 414:7337-7361. [PMID: 36028724 PMCID: PMC9482897 DOI: 10.1007/s00216-022-04259-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022]
Abstract
Since its inception in the early 80s, inductively coupled plasma-mass spectrometry has developed to the method of choice for the analysis of elements in complex biological systems. High sensitivity paired with isotopic selectivity and a vast dynamic range endorsed ICP-MS for the inquiry of metals in the context of biomedical questions. In a stand-alone configuration, it has optimal qualities for the biomonitoring of major, trace and toxicologically relevant elements and may further be employed for the characterisation of disrupted metabolic pathways in the context of diverse pathologies. The on-line coupling to laser ablation (LA) and chromatography expanded the scope and application range of ICP-MS and set benchmarks for accurate and quantitative speciation analysis and element bioimaging. Furthermore, isotopic analysis provided new avenues to reveal an altered metabolism, for the application of tracers and for calibration approaches. In the last two decades, the scope of ICP-MS was further expanded and inspired by the introduction of new instrumentation and methodologies including novel and improved hardware as well as immunochemical methods. These additions caused a paradigm shift for the biomedical application of ICP-MS and its impact in the medical sciences and enabled the analysis of individual cells, their microenvironment, nanomaterials considered for medical applications, analysis of biomolecules and the design of novel bioassays. These new facets are gradually recognised in the medical communities and several clinical trials are underway. Altogether, ICP-MS emerged as an extremely versatile technique with a vast potential to provide novel insights and complementary perspectives and to push the limits in the medical disciplines. This review will introduce the different facets of ICP-MS and will be divided into two parts. The first part will cover instrumental basics, technological advances, and fundamental considerations as well as traditional and current applications of ICP-MS and its hyphenated techniques in the context of biomonitoring, bioimaging and elemental speciation. The second part will build on this fundament and describe more recent directions with an emphasis on nanomedicine, immunochemistry, mass cytometry and novel bioassays.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
5
|
Pigg HC, Yglesias MV, Sutton EC, McDevitt CE, Shaw M, DeRose VJ. Time-Dependent Studies of Oxaliplatin and Other Nucleolar Stress-Inducing Pt(II) Derivatives. ACS Chem Biol 2022; 17:2262-2271. [PMID: 35917257 DOI: 10.1021/acschembio.2c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The properties of small molecule Pt(II) compounds that drive specific cellular responses are of interest due to their broad clinical use as chemotherapeutics as well as to provide a better mechanistic understanding of bioinorganic processes. The chemotherapeutic compound cisplatin causes cell death through DNA damage, while oxaliplatin may induce cell death through inhibition of ribosome biogenesis, also referred to as nucleolar stress induction. Previous work has found a subset of oxaliplatin derivatives that cause nucleolar stress at 24 h drug treatment. Here we report that these different Pt(II) derivatives exhibit a range of rates and degrees of global nucleolar stress induction as well as inhibition of rRNA transcription. Potential explanations for these variations include both the ring size and stereochemistry of the non-aquation-labile ligand. We observe that Pt(II) compounds containing a 6-membered ring show faster onset and a higher overall degree of nucleolar stress than those containing a 5-membered ring, and that compounds having the 1R,2R-stereoisomeric conformation show faster onset and a higher overall degree of stress than those having the 1S,2S-conformation. Pt(II) cellular accumulation and cellular Pt(II)-DNA adduct formation did not correlate with nucleolar stress induction, indicating that the effect is not due to global interactions. Together these results suggest that Pt(II) compounds induce nucleolar stress through a mechanism that likely involves one or a few key intermolecular interactions.
Collapse
|
6
|
|
7
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
8
|
Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 2020; 15:1623-1630. [PMID: 32209761 PMCID: PMC7437596 DOI: 10.4103/1673-5374.276321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering; Faculty of Biology; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
9
|
Jansen MAA, Klausen LH, Thanki K, Lyngsø J, Skov Pedersen J, Franzyk H, Nielsen HM, van Eden W, Dong M, Broere F, Foged C, Zeng X. Lipidoid-polymer hybrid nanoparticles loaded with TNF siRNA suppress inflammation after intra-articular administration in a murine experimental arthritis model. Eur J Pharm Biopharm 2019; 142:38-48. [PMID: 31199978 DOI: 10.1016/j.ejpb.2019.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/17/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease, which is characterized by painful chronic inflammation in the joints, and novel safe and efficacious treatments are urgently needed. RNA interference (RNAi) therapy based on small interfering RNA (siRNA) is a promising approach for silencing specific genes involved in inflammation. However, delivery of siRNA to the target site, i.e. the cytosol of immune cells, is a challenge. Here, we designed lipid-polymer hybrid nanoparticles (LPNs) composed of lipidoid and poly(DL-lactic-co-glycolic acid) loaded with a therapeutic cargo siRNA directed against the proinflammatory cytokine tumor necrosis factor (TNF), which plays a key role in the progression of RA. We compared their efficacy and safety with reference lipidoid-based stable nucleic acid lipid particles (SNALPs) in vitro and in vivo. Cryogenic transmission electron microscopy, atomic force microscopy and small-angle X-ray scattering revealed that the mode of loading of siRNA in lamellar structures differs between the two formulations. Thus, siRNA was tightly packed in LPNs, while LPNs displayed lower adhesion than SNALPs. The LPNs mediated a higher TNF silencing effect in vitro than SNALPs in the RAW 264.7 macrophage cell line activated with lipopolysaccharide. For both types of delivery systems, macropinocytosis was involved in cellular uptake. In addition, clathrin-mediated endocytosis contributed to uptake of SNALPs. LPNs loaded with TNF siRNA mediated sequence-specific suppression of inflammation in a murine experimental arthritis model upon intra-articular administration. Hence, the present study demonstrates that LPN-mediated TNF knockdown constitutes a promising approach for arthritis therapy of TNF-mediated chronic inflammatory conditions.
Collapse
Affiliation(s)
- Manon A A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lasse H Klausen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kaushik Thanki
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Clinical Sciences of Companion Animals, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Xianghui Zeng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
10
|
Kreutz D, Gerner C, Meier-Menches SM. Enabling Methods to Elucidate the Effects of Metal-based Anticancer Agents. METAL-BASED ANTICANCER AGENTS 2019:246-270. [DOI: 10.1039/9781788016452-00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Next-generation metal-based pharmaceuticals are considered promising therapeutic agents, which may follow novel modes of action and engage with different targets compared to classical platinum(ii) anticancer agents. However, appropriate methods and assays are required to provide evidence of such unprecedented drug effects. Mass spectrometry (MS) has proved useful in probing the reactivity and selectivity of metal-based anticancer agents on a molecular level and recently also in the cellular context, especially with regard to the proteome. This chapter will discuss the design and use of competitive experiments to investigate activation pathways and binding preferences of metal-based anticancer agents by identifying reaction products via different MS setups. Moreover, cell-based approaches are described to obtain insights into novel potential targets and modes of action. Thus, mass spectrometry emerges as an enabling technology that connects molecules to mechanisms, highlighting the broad applicability of this analytical technique to the discovery and understanding of metal-based anticancer agents.
Collapse
Affiliation(s)
- D. Kreutz
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - C. Gerner
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| | - S. M. Meier-Menches
- University of Vienna, Department of Analytical Chemistry Waehringer Str. 38 1090 Vienna Austria
| |
Collapse
|
11
|
Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep 2019; 9:5627. [PMID: 30948733 PMCID: PMC6449338 DOI: 10.1038/s41598-019-41903-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
The composition of the plasma membrane of malignant cells is thought to influence the cellular uptake of cisplatin and to take part in developing resistance to this widespread anti-cancer drug. In this work we study the permeation of cisplatin through the model membranes of normal and cancer cells using molecular dynamics simulations. A special attention is paid to lipid asymmetry and cholesterol content of the membranes. The loss of lipid asymmetry, which is common for cancer cells, leads to a decrease in their permeability to cisplatin by one order of magnitude in comparison to the membranes of normal cells. The change in the cholesterol molar ratio from 0% to 33% also decreases the permeability of the membrane by approximately one order of magnitude. The permeability of pure DOPC membrane is 5-6 orders of magnitude higher than one of the membranes with realistic lipid composition, which makes it as an inadequate model for the studies of drug permeability.
Collapse
Affiliation(s)
- Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.,Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028, Kyiv, Ukraine
| |
Collapse
|
12
|
Galvez L, Theiner S, Grabarics M, Kowol CR, Keppler BK, Hann S, Koellensperger G. Critical assessment of different methods for quantitative measurement of metallodrug-protein associations. Anal Bioanal Chem 2018; 410:7211-7220. [PMID: 30155703 PMCID: PMC6208971 DOI: 10.1007/s00216-018-1328-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/13/2018] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
Abstract
Quantitative screening for potential drug-protein binding is an essential step in developing novel metal-based anticancer drugs. ICP-MS approaches are at the core of this task; however, many applications lack in the capability of large-scale high-throughput screenings and proper validation. In this work, we critically discuss the analytical figures of merit and the potential method-based quantitative differences applying four different ICP-MS strategies to ex vivo drug-serum incubations. Two candidate drugs, more specifically, two Pt(IV) complexes with known differences of binding affinity towards serum proteins were selected. The study integrated centrifugal ultrafiltration followed by flow injection analysis, turbulent flow chromatography (TFC), and size exclusion chromatography (SEC), all combined with inductively coupled plasma-mass spectrometry (ICP-MS). As a novelty, for the first time, UHPLC SEC-ICP-MS was implemented to enable rapid protein separation to be performed within a few minutes at > 90% column recovery for protein adducts and small molecules. Graphical abstract Quantitative screening for potential drug-protein binding is an essential step in developingnovel metal-based anticancer drugs.
Collapse
Affiliation(s)
- Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Márkó Grabarics
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences - BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Klose MHM, Schöberl A, Heffeter P, Berger W, Hartinger CG, Koellensperger G, Meier-Menches SM, Keppler BK. Serum-binding properties of isosteric ruthenium and osmium anticancer agents elucidated by SEC-ICP-MS. MONATSHEFTE FUR CHEMIE 2018; 149:1719-1726. [PMID: 30237619 PMCID: PMC6133104 DOI: 10.1007/s00706-018-2280-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/14/2018] [Indexed: 11/26/2022]
Abstract
ABSTRACT Size-exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) was used to study the serum-binding preferences of two metallodrugs with anticancer activities in vivo, namely the organoruthenium compound plecstatin-1 and its isosteric osmium analog. The complexes were administered intraperitoneally into mice bearing a CT-26 tumor. Comparing the total metal content of mouse whole blood and serum underlined that the metallodrugs are mainly located in serum and not in the cellular fraction of the blood samples. In mouse serum, both compounds were not only found to bind extensively to the serum albumin/transferrin fraction but also to immunoglobulins. Free drug was not observed in any of the samples indicating rapid protein binding of the metallodrugs. These findings were validated by spiking human serum with the respective compounds ex vivo. An NCI-60 screen is reported for the osmium analog, which revealed a relative selectivity for cancer cell lines of the ovary and the central nervous system with respect to plecstatin-1. Finally, a COMPARE 170 analysis revealed disruption of DNA synthesis as a possible treatment effect of the osmium-based drug candidate. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Matthias H. M. Klose
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘Translational Cancer Therapy Research’, University and Medical University of Vienna, Vienna, Austria
| | - Anna Schöberl
- Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Petra Heffeter
- Research Cluster ‘Translational Cancer Therapy Research’, University and Medical University of Vienna, Vienna, Austria
- Department of Medicine I and Comprehensive Cancer Centre of the Medical University, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Research Cluster ‘Translational Cancer Therapy Research’, University and Medical University of Vienna, Vienna, Austria
- Department of Medicine I and Comprehensive Cancer Centre of the Medical University, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Christian G. Hartinger
- School of Chemistry, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand
| | - Gunda Koellensperger
- Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Samuel M. Meier-Menches
- Research Cluster ‘Translational Cancer Therapy Research’, University and Medical University of Vienna, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster ‘Translational Cancer Therapy Research’, University and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Analysis of Drug Active Pharmaceutical Ingredients and Biomolecules Using Triple Quadrupole ICP-MS. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Dell'Anna MM, Censi V, Carrozzini B, Caliandro R, Denora N, Franco M, Veclani D, Melchior A, Tolazzi M, Mastrorilli P. Triphenylphosphane Pt(II) complexes containing biologically active natural polyphenols: Synthesis, crystal structure, molecular modeling and cytotoxic studies. J Inorg Biochem 2016; 163:346-361. [DOI: 10.1016/j.jinorgbio.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
17
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
18
|
Weber G. Electrochemistry Coupled to Mass Spectrometry for Investigating Oxidative Metabolism of Pt-Based Drug Conjugates: A Novel Approach. Metallomics 2016. [DOI: 10.1002/9783527694907.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Günther Weber
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.; Otto-Hahn-Str. 6b 44227 Dortmund Germany
| |
Collapse
|
19
|
Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol 2016; 102:37-46. [DOI: 10.1016/j.critrevonc.2016.03.014] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 11/23/2022] Open
|
20
|
Alshiekh A, Clausén M, Elmroth SKC. Kinetics of cisplatin binding to short r(GG) containing miRNA mimics - influence of Na(+)versus K(+), temperature and hydrophobicity on reactivity. Dalton Trans 2016; 44:12623-32. [PMID: 26079627 DOI: 10.1039/c5dt00663e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acids are well recognized targets for platinum-based anticancer drugs, with RNA and DNA being kinetically comparable. In the case of RNA, previous studies have shown that the reaction between small duplex RNAs (dsRNAs) and monoaquated cisplatin (cis-Pt(NH3)2Cl(OH2)(+), ) can be followed by the metal induced hyperchromicity occurring directly after addition of to e.g. microRNA mimics. In the present study, we have used this approach to compare thermal stability and reactivity between intracellularly- and extracellularly relevant salt concentration (CNa(+) and CK(+)ca. 0.1 M), and also as a function of increased hydrophobicity (10% v/v EtOH). In addition, reactivity was studied as a function of temperature in the interval ca. 5-20 °C below the respective dsRNA melting temperatures (Tms). Four different 13- to 20-mer dsRNAs with two different central sequence motifs were used as targets containing either a central r(GG)·r(CC)- or r(GG)·r(UAU)-sequence. The reactions exhibited half-lives in the minute- to hour range at 38 °C in the presence of excess in the μM range. Further, a linear dependence was found between C and the observed pseudo-first-order rate constants. The resulting apparent second-order rate constants were significantly larger for the lower melting r(GG)·r(UAU)-containing sequences compared with that of the fully complementary ones; the higher and lower reactivities represented by RNA-1-3 and RNA-1-1 with k2,appca. 30 and 8 M(-1) s(-1) respectively at CNa(+) = 122 mM. For all RNAs a common small, but significant, trend was observed with increased reactivity in the presence of K(+) compared with Na(+), and decreased reactivity in the presence of EtOH. Finally, the temperature dependence of k2,app was evaluated using the Eyring equation. The retrieved activation parameters reveal positive values for both ΔH(≠) and ΔS(≠) for all dsRNAs, in the range ca. 23-34 kcal mol(-1) and 22-57 cal K(-1) mol(-1) respectively. These values indicate solvational effects to be important for the rate determining step of the reaction, and thus in support of a structural change of the dsRNA to take place in parallel with the adduct formation step.
Collapse
Affiliation(s)
- Alak Alshiekh
- Biochemistry and Structural Biology, KILU, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
21
|
Holtkamp H, Hartinger CG. Capillary electrophoresis in metallodrug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 16:16-22. [PMID: 26547417 DOI: 10.1016/j.ddtec.2015.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
Capillary electrophoresis (CE) is a separation method based on differential migration of analytes in electric fields. The compatibility with purely aqueous separation media makes it a versatile tool in metallodrug research. Many metallodrugs undergo ligand exchange reactions that can easily be followed with this method and the information gained can even be improved by coupling the CE to advanced detectors, such as mass spectrometers. This gives the method high potential to facilitate the development of metallodrugs, especially when combined with innovative method development and experimental design.
Collapse
Affiliation(s)
- Hannah Holtkamp
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
22
|
Mügge C, Marzo T, Massai L, Hildebrandt J, Ferraro G, Rivera-Fuentes P, Metzler-Nolte N, Merlino A, Messori L, Weigand W. Platinum(II) Complexes with O,S Bidentate Ligands: Biophysical Characterization, Antiproliferative Activity, and Crystallographic Evidence of Protein Binding. Inorg Chem 2015; 54:8560-70. [PMID: 26280387 DOI: 10.1021/acs.inorgchem.5b01238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We recently characterized a series of novel platinum(II) compounds bearing a conserved O,S binding moiety as a bifunctional ligand and evaluated their solution behavior and antiproliferative properties in vitro against a representative cancer cell line. On the whole, those platinum compounds showed an appreciable stability in mixed dimethyl sulfoxide-aqueous buffers and promising in vitro cytotoxic effects; yet they manifested a rather limited solubility in aqueous media making them poorly suitable for further pharmaceutical development. To overcome this drawback, four new derivatives of this series were prepared and characterized based on a careful choice of substituents on the O,S bidentate ligand. The solubility and stability profile of these novel compounds in a reference buffer was determined, as well as the ligands' log P(o/w) value (P(o/w) = n-octanol-water partition coefficient) as an indirect measure for the complexes' lipophilicity. The antiproliferative properties were comparatively evaluated in a panel of three cancer cell lines. The protein binding properties of the four platinum compounds were assessed using the model protein hen egg white lysozyme (HEWL), and the molecular structures of two relevant HEWL-metallodrug adducts were solved. Overall, it is shown that a proper choice of the substituents leads to a higher solubility and enables a selective fine-tuning of the antiproliferative properties. The implications of these results are thoroughly discussed.
Collapse
Affiliation(s)
- Carolin Mügge
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena , Humboldtstraße 8, 07743 Jena, Germany.,Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum , Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Tiziano Marzo
- Laboratory of Metals in Medicine, Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Lara Massai
- Laboratory of Metals in Medicine, Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Jana Hildebrandt
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena , Humboldtstraße 8, 07743 Jena, Germany
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II , via Cintia, Napoli I-80126, Italy
| | - Pablo Rivera-Fuentes
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum , Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II , via Cintia, Napoli I-80126, Italy.,CNR Institute of Biostructures and Bioimages , via Mezzocannone 16, Napoli I-80100, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine, Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena , Humboldtstraße 8, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM) , Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
23
|
Ravera M, Gabano E, Zanellato I, Bonarrigo I, Alessio M, Arnesano F, Galliani A, Natile G, Osella D. Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. J Inorg Biochem 2015; 150:1-8. [PMID: 26042542 DOI: 10.1016/j.jinorgbio.2015.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/25/2023]
Abstract
A series of Pt(IV) anticancer prodrug candidates, having the equatorial arrangement of cisplatin and bearing two aliphatic carboxylato axial ligands, has been investigated to prove the relationship between lipophilicity, cellular accumulation, DNA platination and antiproliferative activity on the cisplatin-sensitive A2780 ovarian cancer cell line. Unlike cisplatin, no facilitated influx/efflux mechanism appears to operate in the case of the Pt(IV) complexes under investigation, thus indicating that they enter by passive diffusion. While Pt(IV) complexes having lipophilicity comparable to that of cisplatin (negative values of log Po/w) exhibit a cellular accumulation similar to that of cisplatin, the most lipophilic complexes of the series show much higher cellular accumulation (stemming from enhanced passive diffusion), accompanied by greater DNA platination and cell growth inhibition. Even if the Pt(IV) complexes are removed from the culture medium in the recovery process, the level of DNA platination remains very high and persistent in time, indicating efficient storing of the complexes and poor detoxification efficiency.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Ilaria Bonarrigo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Manuela Alessio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Fabio Arnesano
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Angela Galliani
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona, 4, 70125 Bari, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
24
|
Zabel R, Kullmann M, Kalayda GV, Jaehde U, Weber G. Optimized sample preparation strategy for the analysis of low molecular mass adducts of a fluorescent cisplatin analogue in cancer cell lines by CE-dual-LIF. Electrophoresis 2015; 36:509-17. [DOI: 10.1002/elps.201400467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Robert Zabel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| | | | | | - Ulrich Jaehde
- Institute of Pharmacy; University of Bonn; Bonn Germany
| | - Günther Weber
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| |
Collapse
|
25
|
Reactivity of hexanuclear ruthenium metallaprisms towards nucleotides and a DNA decamer. J Biol Inorg Chem 2015; 20:49-59. [PMID: 25380991 DOI: 10.1007/s00775-014-1208-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/12/2014] [Indexed: 01/12/2023]
Abstract
The reactivity of three hexacationic arene ruthenium metallaprisms towards isolated nucleotides and a short DNA strand was investigated using NMR spectroscopy, ESI mass spectrometry, UV/Vis and circular dichroism spectroscopy. The metallaprism built from oxalato-bridging ligands reacts rapidly in the presence of deoxyguanosine monophosphate (dGMP) and deoxyadenosine monophosphate, while the benzoquinonato derivative only reacts with dGMP. On the other hand, the larger metallaprism incorporating naphtoquinonato bridges remains stable in the presence of nucleotides. The reactivity of the three hexacationic metallaprisms with the decameric oligonucleotide d(CGCGATCGCG)2 was also investigated. Analysis of the NMR, MS, UV/Vis and CD data suggests that no adducts are formed between the oligonucleotide and the metallaprisms, but electrostatic interactions, leading to partial unwinding of the double-stranded oligonucleotide, were evidenced.
Collapse
|
26
|
de Freitas LM, Soares CP, Fontana CR. Synergistic effect of photodynamic therapy and cisplatin: a novel approach for cervical cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:365-73. [PMID: 25240426 DOI: 10.1016/j.jphotobiol.2014.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
Cervical cancer is a neoplasia primarily caused by Human papillomavirus (HPV) infection. Current treatment modalities involve cisplatin, a potent chemotherapeutic agent with severe adverse effects. Photodynamic therapy (PDT) is a promising modality for the treatment of cancer and infections, which has been associated with innovative therapeutic approaches, especially for the treatment of neoplasias. This study aimed to investigate the anticancer potential of PDT mediated by methylene blue (MB) or Photogem (PG) individually and combined with cisplatin in vitro. SiHa, C-33 A and HaCaT cells were incubated with MB, PG and/or cisplatin and received no further treatment or were irradiated with a 630 or a 660 nm LED light source at energy densities varying according to the photosensitizer (PS). The MTT assay was employed to assess cell viability. Both PS were effective in reducing cell viability with the cytotoxicity being dependent on the light dose. When compared to PDT groups, cisplatin was less effective. The cell viability of the combined therapy groups was significantly lower compared to monotherapies. The sequence of treatments (PDT+cisplatin/cisplatin+PDT) was important and had different results when varying the PS, but combination therapy resulted in an enhanced anticancer effect regardless of treatment protocol.
Collapse
Affiliation(s)
- Laura Marise de Freitas
- Faculdade de Ciencias Farmaceuticas, Univ Estadual Paulista (UNESP), Rua Expedicionarios do Brasil 1621, Araraquara, Sao Paulo 14801-902, Brazil.
| | - Christiane Pienna Soares
- Faculdade de Ciencias Farmaceuticas, Univ Estadual Paulista (UNESP), Rua Expedicionarios do Brasil 1621, Araraquara, Sao Paulo 14801-902, Brazil.
| | - Carla Raquel Fontana
- Faculdade de Ciencias Farmaceuticas, Univ Estadual Paulista (UNESP), Rua Expedicionarios do Brasil 1621, Araraquara, Sao Paulo 14801-902, Brazil.
| |
Collapse
|
27
|
Andres AL, Gong X, Di K, Bota DA. Low-doses of cisplatin injure hippocampal synapses: a mechanism for 'chemo' brain? Exp Neurol 2014; 255:137-44. [PMID: 24594220 DOI: 10.1016/j.expneurol.2014.02.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/07/2014] [Accepted: 02/14/2014] [Indexed: 02/08/2023]
Abstract
Chemotherapy-related cognitive deficits are a major neurological problem, but the underlying mechanisms are unclear. The death of neural stem/precursor cell (NSC) by cisplatin has been reported as a potential cause, but this requires high doses of chemotherapeutic agents. Cisplatin is frequently used in modern oncology, and it achieves high concentrations in the patient's brain. Here we report that exposure to low concentrations of cisplatin (0.1μM) causes the loss of dendritic spines and synapses within 30min. Longer exposures injured dendritic branches and reduced dendritic complexity. At this low concentration, cisplatin did not affect NSC viability nor provoke apoptosis. However, higher cisplatin levels (1μM) led to the rapid loss of synapses and dendritic disintegration, and neuronal-but not NSC-apoptosis. In-vivo treatment with cisplatin at clinically relevant doses also caused a reduction of dendritic branches and decreased spine density in CA1 and CA3 hippocampal neurons. An acute increase in cell death was measured in the CA1 and CA3 neurons, as well as in the NSC population located in the subgranular zone of the dentate gyrus in the cisplatin treated animals. The density of dendritic spines is related to the degree of neuronal connectivity and function, and pathological changes in spine number or structure have significant consequences for brain function. Therefore, this synapse and dendritic damage might contribute to the cognitive impairment observed after cisplatin treatment.
Collapse
Affiliation(s)
- Adrienne L Andres
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Xing Gong
- Department of Neurology, University of California-Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California-Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurological Surgery, University of California-Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California-Irvine, Irvine, CA, USA
| | - Daniela A Bota
- Department of Neurology, University of California-Irvine, Irvine, CA, USA; Department of Neurological Surgery, University of California-Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
28
|
Palm-Espling ME, Andersson CD, Björn E, Linusson A, Wittung-Stafshede P. Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking. PLoS One 2013; 8:e70473. [PMID: 23936210 PMCID: PMC3728025 DOI: 10.1371/journal.pone.0070473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Cisplatin (CisPt) is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/B proteins. CisPt has been shown to bind to ATP7B, resulting in vesicle sequestering of the drug. In addition, we and others showed that the apo-form of Atox1 could interact with CisPt in vitro and in vivo. Since the function of Atox1 is to transport copper (Cu) ions, it is important to assess how CisPt binding depends on Cu-loading of Atox1. Surprisingly, we recently found that CisPt interacted with Cu-loaded Atox1 in vitro at a position near the Cu site such that unique spectroscopic features appeared. Here, we identify the binding site for CisPt in the Cu-loaded form of Atox1 using strategic variants and a combination of spectroscopic and chromatographic methods. We directly prove that both metals can bind simultaneously and that the unique spectroscopic signals originate from an Atox1 monomer species. Both Cys in the Cu-site (Cys12, Cys15) are needed to form the di-metal complex, but not Cys41. Removing Met10 in the conserved metal-binding motif makes the loop more floppy and, despite metal binding, there are no metal-metal electronic transitions. In silico geometry minimizations provide an energetically favorable model of a tentative ternary Cu-Pt-Atox1 complex. Finally, we demonstrate that Atox1 can deliver CisPt to the fourth metal binding domain 4 of ATP7B (WD4), indicative of a possible drug detoxification mechanism.
Collapse
Affiliation(s)
| | | | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anna Linusson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|