1
|
Sargison LJ, Sargison A, Carnachan SM, Smith RAA, Daines AM, Hinkley SFR, Cool SM. A semi-synthetic heparan sulfate material that potentiates BMP2-mediated osteogenesis. Int J Biol Macromol 2025; 314:144349. [PMID: 40389005 DOI: 10.1016/j.ijbiomac.2025.144349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/29/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Heparan sulfate (HS) is a naturally occurring polysaccharide fundamental to eukaryotic life. It is currently under investigation in many contexts for its ability to modulate and potentiate the interactions of proteins in the extracellular matrix. Among other promising applications, heparan sulfate has been investigated as a material for potentiating Bone Morphogenetic Protein 2 (BMP2) activity in osteogenesis and bone repair, with encouraging results. However, isolating a structurally consistent, scalable, and economical source of heparan sulfate has been problematic. To address this, a series of semi-synthetic heparan sulfates were prepared from affordable, batch-consistent, commercially available heparin and were evaluated in their structural and BMP2-potentiating properties. These populations were also compared to a population of heparan sulfate previously optimised for bone repair - HS3. We show that a semi-synthetic process generates a heparan sulfate-like material that potentiates BMP2-mediated osteogenesis and warrants further investigation as a material for bone augmentation procedures.
Collapse
Affiliation(s)
- Liam J Sargison
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Amira Sargison
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Susan M Carnachan
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Alison M Daines
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
2
|
Wright BA, Sarpong R. Molecular complexity as a driving force for the advancement of organic synthesis. Nat Rev Chem 2024; 8:776-792. [PMID: 39251714 DOI: 10.1038/s41570-024-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
The generation of molecular complexity is a primary goal in the field of synthetic chemistry. In the context of retrosynthetic analysis, the concept of molecular complexity is central to identifying productive disconnections and the development of efficient total syntheses. However, this field-defining concept is frequently invoked on an intuitive basis without precise definition or appreciation of its subtleties. Methods for quantifying molecular complexity could prove useful for characterizing the state of synthesis in a more rigorous, reliable and reproducible fashion. As a first step to evaluating the importance of these methods to the state of the field, here we present our perspective on the development of molecular complexity quantification and its implications for chemical synthesis. The extension and application of these methods beyond computer-aided synthesis planning and medicinal chemistry to the traditional practice of 'complex molecule' synthesis could have the potential to unearth new opportunities and more efficient approaches for synthesis.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, USA.
| |
Collapse
|
3
|
Dukes DM, Atanassov VK, Smith JM. Enantioselective total synthesis of (+)-cylindricine B. Chem Sci 2024:d4sc04910a. [PMID: 39309100 PMCID: PMC11409986 DOI: 10.1039/d4sc04910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
This article describes the first enantioselective synthesis of the Tasmanian marine alkaloid (+)-cylindricine B. The concise construction of the compound hinged on dearomative retrosynthetic logic combined with a tactical advance in the generation of congested, cyclic, alpha-tertiary amine centers. The scope of this key coupling reaction was explored in addition to providing a synthetic application for Cu-catalyzed enantioselective dearomatization of N-acyl-pyridiniums. The synthesis proceeds in five or six steps from commercially available starting materials.
Collapse
Affiliation(s)
- Dallas M Dukes
- Florida State University, Department of Chemistry and Biochemistry, Laboratories of Molecular Recognition 95 Chieftan Way Tallahassee FL 32306 USA
| | - Victor K Atanassov
- Florida State University, Department of Chemistry and Biochemistry, Laboratories of Molecular Recognition 95 Chieftan Way Tallahassee FL 32306 USA
| | - Joel M Smith
- Florida State University, Department of Chemistry and Biochemistry, Laboratories of Molecular Recognition 95 Chieftan Way Tallahassee FL 32306 USA
| |
Collapse
|
4
|
Cheng B, Wang Q, An Y, Chen F. Recent advances in the total synthesis of galantamine, a natural medicine for Alzheimer's disease. Nat Prod Rep 2024; 41:1060-1090. [PMID: 38450550 DOI: 10.1039/d4np00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Covering: 2006 to 2023(-)-Galantamine is a natural product with distinctive structural features and potent inhibitory activity against acetylcholine esterase (AChE). It is clinically approved for the treatment of Alzheimer's disease. The clinical significance and scarcity of this natural product have prompted extensive and ongoing efforts towards the chemical synthesis of this challenging tetracyclic structure. The objective of this review is to summarize and discuss recent progress in the total synthesis of galantamine from 2006 to 2023. The contents are organized according to the synthetic strategies for the construction of the quaternary center. Key features of each synthesis have been highlighted, followed by a summary and outlook at the end.
Collapse
Affiliation(s)
- Bichu Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qi Wang
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi An
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Hess SN, Fürstner A. An Efficient and Scalable "Second Generation" Total Synthesis of the Marine Polyketide Limaol Endowed with Antiparasitic Activity. Chemistry 2024; 30:e202401429. [PMID: 38716817 DOI: 10.1002/chem.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/20/2024]
Abstract
The cluster of four skipped exo-methylene substituents on the "northern" wing of limaol renders this dinoflagellate-derived marine natural product unique in structural terms. This arguably non-thermodynamic array gains kinetic stability by virtue of populating local conformations which impede isomerization to a partly or fully conjugated polyene. This analysis suggested that the difficulties encountered during the late stages of our first total synthesis of this polyketide had not been caused by an overly fragile character of this unusual substructure; rather, an unfavorable steric microenvironment about the spirotricyclic core was identified as the likely cause. To remedy the issue, the protecting groups on this central fragment were changed; in effect, this amendment allowed all strategic and practical problems to be addressed. As a result, the overall yield over the longest linear sequence was multiplied by a factor of almost five and the material throughput increased more than eighty-fold per run. Key-to-success was a gold-catalyzed spirocyclization reaction; the reasons why a Brønsted acid cocatalyst is needed and the origin of the excellent levels of selectivity were delineated. The change of the protecting groups also allowed for much improved fragment coupling processes; most notably, the sequence of a substrate-controlled carbonyl addition reaction followed by Mitsunobu inversion that had originally been necessary to affix the southern tail to the core could be replaced by a reagent controlled asymmetric allylation. Finally, a much-improved route to the "northern" sector was established by leveraging the power of asymmetric hydrogenation of a 2-pyrone derivative. Limaol was found to combine appreciable antiparasitic activity with very modest cytotoxicity.
Collapse
Affiliation(s)
- Stephan N Hess
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
6
|
Ba M, He F, Ren L, Whittingham WG, Yang P, Li A. Scalable Total Synthesis of Acremolactone B. Angew Chem Int Ed Engl 2024; 63:e202314800. [PMID: 37932901 DOI: 10.1002/anie.202314800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Acremolactone B is a pyridine-containing azaphilone-type polyketide. The first total synthesis of this molecule was achieved on a gram scale, based on an aza-6π electrocyclization-aromatization strategy for construction of the tetra-substituted pyridine ring. A bicyclic intermediate was expeditiously prepared by using [2+2] photocycloaddition and chemoselective Baeyer-Villiger oxidation, which was further elaborated to a densely substituted aza-triene. An electrocyclization-aromatization cascade was utilized to forge the tetracyclic core of this natural product, and the side chain was introduced through diastereoselective acylation and reduction.
Collapse
Affiliation(s)
- Mengyu Ba
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fengqi He
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lu Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - William G Whittingham
- Jealott's Hill International Research Centre, Syngenta Limited, Bracknell, Berkshire, RG42 6EY, UK
| | - Peng Yang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Li
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
8
|
Berida TI, Adekunle YA, Dada-Adegbola H, Kdimy A, Roy S, Sarker SD. Plant antibacterials: The challenges and opportunities. Heliyon 2024; 10:e31145. [PMID: 38803958 PMCID: PMC11128932 DOI: 10.1016/j.heliyon.2024.e31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Nature possesses an inexhaustible reservoir of agents that could serve as alternatives to combat the growing threat of antimicrobial resistance (AMR). While some of the most effective drugs for treating bacterial infections originate from natural sources, they have predominantly been derived from fungal and bacterial species. However, a substantial body of literature is available on the promising antibacterial properties of plant-derived compounds. In this comprehensive review, we address the major challenges associated with the discovery and development of plant-derived antimicrobial compounds, which have acted as obstacles preventing their clinical use. These challenges encompass limited sourcing, the risk of agent rediscovery, suboptimal drug metabolism, and pharmacokinetics (DMPK) properties, as well as a lack of knowledge regarding molecular targets and mechanisms of action, among other pertinent issues. Our review underscores the significance of these challenges and their implications in the quest for the discovery and development of effective plant-derived antimicrobial agents. Through a critical examination of the current state of research, we give valuable insights that will advance our understanding of these classes of compounds, offering potential solutions to the global crisis of AMR. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Tomayo I. Berida
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Yemi A. Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayoub Kdimy
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, 10056, Morocco
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
9
|
Liu M, Wu C, Xie X, Li H, She X. Total Synthesis of the Euphorbia Diterpenoid Pepluacetal. Angew Chem Int Ed Engl 2024; 63:e202400943. [PMID: 38509839 DOI: 10.1002/anie.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The first total synthesis of the Euphorbia diterpenoid pepluacetal is disclosed in both racemic and chiral fashions. The synthesis strategically relies on a photo-induced Wolff rearrangement/lactonization cascade (WRLC) reaction to access the cyclobutane moiety, a ring-closing metathesis/cyclopropanation sequence to rapidly forge the 7-3 bicyclic system, and a late-stage Rh-catalyzed transannular carbenoid insertion to C(sp3)-H bond followed by a Baeyer-Villiger oxidation and ring-opening manipulations to install the side chain. The synthetic route demonstrates excellent stereochemical control on the non-classical concave-face bond formation, remote traceless stereochemical relay and high scalability to provide 20 mg of (+)-pepluacetal.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Chuanhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
10
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
11
|
Wang Y, Gui J. Bioinspired Skeletal Reorganization Approach for the Synthesis of Steroid Natural Products. Acc Chem Res 2024. [PMID: 38301249 DOI: 10.1021/acs.accounts.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSteroids, termed "keys to life" by Rupert Witzmann, have a wide variety of biological activities, including anti-inflammatory, antishock, immunosuppressive, stress-response-enhancing, and antifertility activities, and steroid research has made great contributions to drug discovery and development. According to a chart compiled by the Njardarson group at the University of Arizona, 15 of the top 200 small-molecule drugs (by retail sales in 2022) are steroid-related compounds. Therefore, synthetic and medicinal chemists have long pursued the chemical synthesis of steroid natural products (SNPs) with diverse architectures, and vital progress has been achieved, especially in the twentieth century. In fact, several chemists have been rewarded with a Nobel Prize for original contributions to the isolation of steroids, the elucidation of their structures and biosynthetic pathways, and their chemical synthesis. However, in contrast to classical steroids, which have a 6/6/6/5-tetracyclic framework, rearranged steroids (i.e., abeo-steroids and secosteroids), which are derived from classical steroids by reorganization of one or more C-C bonds of the tetracyclic skeleton, have started to gain attention from the synthetic community only in the last two decades. These unique rearranged steroids have complex frameworks with high oxidation states, are rich in stereogenic centers, and have attractive biological activities, rendering them popular yet formidable synthetic targets.Our group has a strong interest in the efficient synthesis of SNPs and, drawing inspiration from nature, we have found that bioinspired skeletal reorganization (BSR) is an efficient strategy for synthesizing challenging rearranged steroids. Using this strategy, we recently achieved concise syntheses of five different kinds of SNPs (cyclocitrinols, propindilactone G, bufospirostenin A, pinnigorgiol B, and sarocladione) with considerably rearranged skeletons; our work also enabled us to reassign the originally proposed structure of sarocladione. In this Account, we summarize the proposed biosyntheses of these SNPs and describe our BSR approach for the rapid construction of their core frameworks. In the work described herein, information gleaned from the proposed biosyntheses allowed us to develop routes for chemical synthesis. However, in several cases, the synthetic precursors that we used for our BSR approach differed substantially from the intermediates in the proposed biosyntheses, indicating the considerable challenges we encountered during this synthetic campaign. It is worth mentioning that during our pursuit of concise and scalable syntheses of these natural products, we developed two methods for accessing synthetically challenging targets: a method for rapid construction of bridged-ring molecules by means of point-to-planar chirality transfer and a method for efficient construction of macrocyclic molecules via a novel ruthenium-catalyzed endoperoxide fragmentation. Our syntheses vividly demonstrate that consideration of natural product biosynthesis can greatly facilitate chemical synthesis, and we expect that the BSR approach will find additional applications in the efficient syntheses of other structurally complex steroid and terpenoid natural products.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Talevi A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Methods Mol Biol 2024; 2714:1-20. [PMID: 37676590 DOI: 10.1007/978-1-0716-3441-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Computer-aided drug discovery and design involve the use of information technologies to identify and develop, on a rational ground, chemical compounds that align a set of desired physicochemical and biological properties. In its most common form, it involves the identification and/or modification of an active scaffold (or the combination of known active scaffolds), although de novo drug design from scratch is also possible. Traditionally, the drug discovery and design processes have focused on the molecular determinants of the interactions between drug candidates and their known or intended pharmacological target(s). Nevertheless, in modern times, drug discovery and design are conceived as a particularly complex multiparameter optimization task, due to the complicated, often conflicting, property requirements.This chapter provides an updated overview of in silico approaches for identifying active scaffolds and guiding the subsequent optimization process. Recent groundbreaking advances in the field have also analyzed the integration of state-of-the-art machine learning approaches in every step of the drug discovery process (from prediction of target structure to customized molecular docking scoring functions), integration of multilevel omics data, and the use of a diversity of computational approaches to assist target validation and assess plausible binding pockets.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata, Argentina.
- Argentinean National Council of Scientific and Technical Research (CONICET), La Plata, Argentina.
| |
Collapse
|
13
|
Fay N, Kouklovsky C, de la Torre A. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS ORGANIC & INORGANIC AU 2023; 3:350-363. [PMID: 38075446 PMCID: PMC10704578 DOI: 10.1021/acsorginorgau.3c00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 06/13/2024]
Abstract
Total synthesis is a field in constant progress. Its practitioners aim to develop ideal synthetic strategies to build complex molecules. As such, they are both a driving force and a showcase of the progress of organic synthesis. In this Perspective, we discuss recent notable total syntheses. The syntheses selected herein are classified according to the key strategic considerations for each approach.
Collapse
Affiliation(s)
- Nicolas Fay
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 Avenue des Sciences, 91405 Orsay, France
| |
Collapse
|
14
|
Klischan MT, Mazzone F, Berning L, Greb J, Schlamkow M, Haase M, Frey W, Stork B, Pfeffer K, Pietruszka J. Modular Approach for the Synthesis and Bioactivity Profiling of 8,8'-Biflavones. ACS OMEGA 2023; 8:41816-41834. [PMID: 37970025 PMCID: PMC10634270 DOI: 10.1021/acsomega.3c06503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/17/2023]
Abstract
In this work, we report the scalable and modular synthesis of a library of 55 monomeric and dimeric flavonoids including 14 8,8'-biflavones. The sterically demanding tetra-ortho-substituted axis of an acetophenone dimer key intermediate was constructed in a regioselective manner using Fe-mediated oxidative coupling. This step was systematically optimized and performed on up to multigram scale. The biological activities of this compound library were evaluated, including cytotoxicity against healthy and malignant human cell lines, antimicrobial activity against the apicomplexan parasite Toxoplasma gondii, and antioxidant capacity. A marked increase in activity for the 8,8'-dimeric structures compared to that of their monomeric counterparts was observed. Several biflavones were identified with high selectivity indices (low cytotoxicity and high antiprotozoal activity), showing that this class of natural products may serve as lead structures for further investigations.
Collapse
Affiliation(s)
- Moritz
K. T. Klischan
- Institute
of Bioorganic Chemistry, Heinrich Heine
University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Geb.15.8, 52426 Jülich, Germany
| | - Flaminia Mazzone
- Institute
of Medical Microbiology and Hospital Hygiene, Medical Faculty and
University Hospital Düsseldorf, Heinrich
Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Berning
- Institute
of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Julian Greb
- Institute
of Bioorganic Chemistry, Heinrich Heine
University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Geb.15.8, 52426 Jülich, Germany
| | - Max Schlamkow
- Institute
of Bioorganic Chemistry, Heinrich Heine
University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Geb.15.8, 52426 Jülich, Germany
- Institut
für Bio- und Geowissenschaften (IBG-1: Bioorganische Chemie)
Forschungszentrum, 52428 Jülich, Germany
| | - Mona Haase
- Institute
of Bioorganic Chemistry, Heinrich Heine
University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Geb.15.8, 52426 Jülich, Germany
| | - Wolfgang Frey
- Institute
of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Björn Stork
- Institute
of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute
of Medical Microbiology and Hospital Hygiene, Medical Faculty and
University Hospital Düsseldorf, Heinrich
Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute
of Bioorganic Chemistry, Heinrich Heine
University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Geb.15.8, 52426 Jülich, Germany
- Institut
für Bio- und Geowissenschaften (IBG-1: Bioorganische Chemie)
Forschungszentrum, 52428 Jülich, Germany
| |
Collapse
|
15
|
Angyal P, Hegedüs K, Mészáros BB, Daru J, Dudás Á, Galambos AR, Essmat N, Al-Khrasani M, Varga S, Soós T. Total Synthesis and Structural Plasticity of Kratom Pseudoindoxyl Metabolites. Angew Chem Int Ed Engl 2023; 62:e202303700. [PMID: 37332089 DOI: 10.1002/anie.202303700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Kristóf Hegedüs
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Bence Balázs Mészáros
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - János Daru
- Department of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
16
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
17
|
Gennaiou K, Kelesidis A, Kourgiantaki M, Zografos AL. Combining the best of both worlds: radical-based divergent total synthesis. Beilstein J Org Chem 2023; 19:1-26. [PMID: 36686041 PMCID: PMC9830495 DOI: 10.3762/bjoc.19.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
A mature science, combining the art of the total synthesis of complex natural structures and the practicality of delivering highly diverged lead compounds for biological screening, is the constant aim of the organic chemistry community. Delivering natural lead compounds became easier during the last two decades, with the evolution of green chemistry and the concepts of atom economy and protecting-group-free synthesis dominating the field of total synthesis. In this new era, total synthesis is moving towards natural efficacy by utilizing both the biosynthetic knowledge of divergent synthesis and the latest developments in radical chemistry. This contemporary review highlights recent total syntheses that incorporate the best of both worlds.
Collapse
Affiliation(s)
- Kyriaki Gennaiou
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Antonios Kelesidis
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Maria Kourgiantaki
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Alexandros L Zografos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| |
Collapse
|
18
|
Albassam H, Mehta CH, Nayak UY. Identification of novel small molecule inhibitors for endoplasmic reticulum oxidoreductase 1α (ERO1α) enzyme: structure-based molecular docking and molecular dynamic simulation studies. J Biomol Struct Dyn 2022; 40:13218-13232. [PMID: 34606425 DOI: 10.1080/07391102.2021.1984308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for the folding of proteins. When protein folding demand exceeds the folding capacity, cells trigger ER stress. ER-oxidoreductase 1α (ERO1α) is an ER stress component that controls oxidative folding protein. Upregulation of ERO1α was reported in distinct types of cancer including breast cancer and colon cancer. It was reported that deletion of ERO1 gene compromised cancer progression and cell proliferation in colon cancer. Thereby, ERO1α inhibition might be a clinically promising anti-cancer therapeutic target. In the present study, we conducted a virtual screening of 6,000 natural-product molecules obtained from Zinc database using a multistep docking approach with a crystal structure of human ERO1α. Our analyses from high throughput virtual screening revealed the top-ranked scores of 3000 molecules with glide scores of less than -4.0 kcal/mol. These molecules were further advanced to standard precision (SP) docking. The top 300 molecules of SP docking with glide scores ≤ -7.5 kcal/mol were chosen to undergo extra precision (XP) docking. Around 40 molecules that have conserved interactions with the binding site of ERO1α were ranked by the XP docking. Based on visual inspection, seven-candidate molecules that have high binding affinity scores and more molecular interactions were shortlisted. The dynamic stability of binding between the candidate molecules and ERO1α was characterized using 100 nanoseconds molecular dynamics simulation method. Two candidates exhibited strong and stable binding complexes with ERO1α. Collectively, these findings suggest that the identified molecules may serve as potential anti-cancer lead molecules subjected to further experimental validation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
19
|
Abstract
Covering: 2011 to 2022The natural world is a prolific source of some of the most interesting, rare, and complex molecules known, harnessing sophisticated biosynthetic machinery evolved over billions of years for their production. Many of these natural products represent high-value targets of total synthesis, either for their desirable biological activities or for their beautiful structures outright; yet, the high sp3-character often present in nature's molecules imparts significant topological complexity that pushes the limits of contemporary synthetic technology. Dearomatization is a foundational strategy for generating such intricacy from simple materials that has undergone considerable maturation in recent years. This review highlights the recent achievements in the field of dearomative methodology, with a focus on natural product total synthesis and retrosynthetic analysis. Disconnection guidelines and a three-phase dearomative logic are described, and a spotlight is given to nature's use of dearomatization in the biosynthesis of various classes of natural products. Synthetic studies from 2011 to 2021 are reviewed, and 425 references are cited.
Collapse
Affiliation(s)
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
20
|
Kourgiantaki M, Demertzidou VP, Zografos AL. Short Scalable Route to Apiaceae Sesquiterpene Scaffolds: Total Synthesis of 4- epi-Epiguaidiol A. Org Lett 2022; 24:8476-8480. [PMID: 36264031 DOI: 10.1021/acs.orglett.2c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxy-Cope/ene reaction cascade to form a locked elemane conformer allows the short scalable synthesis of versatile Apiaceae scaffolds. The divergent fate of the obtained macrocyclic germacrane is surveyed under cationic and dioxygen-induced Prins-type reaction conditions to allow the diastereoselective synthesis of oxidized Apiaceae guaiane congeners and the total synthesis of 4-epi-epiguaidiol A. Additionally, the unprecedented reduction of a hydrogen-bond-biased guaiane substrate permits the chemoselective synthesis of desoxo-jungiaguaiane.
Collapse
Affiliation(s)
- Maria Kourgiantaki
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vera P Demertzidou
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L Zografos
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
21
|
Wan L, Kong G, Liu M, Jiang M, Cheng D, Chen F. Flow chemistry in the multi-step synthesis of natural products. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
22
|
Chemo-enzymatic synthesis of natural products and their analogs. Curr Opin Biotechnol 2022; 77:102759. [PMID: 35908314 DOI: 10.1016/j.copbio.2022.102759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Enzymes continue to gain recognition as valuable tools in synthetic chemistry as they enable transformations, which elude conventional organochemical approaches. As such, the progressing expansion of the biocatalytic arsenal has introduced unprecedented opportunities for new synthetic strategies and retrosynthetic disconnections. As a result, enzymes have found a solid foothold in modern natural product synthesis for applications ranging from the generation of early chiral synthons to endgame transformations, convergent synthesis, and cascade reactions for the rapid construction of molecular complexity. As a primer to the state-of-the-art concerning strategic uses of enzymes in natural product synthesis and the underlying concepts, this review highlights selected recent literature examples, which make a strong case for the admission of enzymatic methodologies into the standard repertoire for complex small-molecule synthesis.
Collapse
|
23
|
Convergent total synthesis of (+)-calcipotriol: A scalable, modular approach to vitamin D analogs. Proc Natl Acad Sci U S A 2022; 119:e2200814119. [PMID: 35476519 DOI: 10.1073/pnas.2200814119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A convergent approach for the total synthesis of calcipotriol (brand name: Dovonex), a proven vitamin D analog used for the treatment of psoriasis, and medicinally relevant synthetic analogs is described. A complete approach, not wedded to semisynthesis, toward both the A-ring and CD-ring is reported. From a retrosynthetic standpoint, hidden symmetry within the decorated A-ring is disclosed, which allowed for scalable quantities of this advanced intermediate. In addition, a radical retrosynthetic approach is described, which highlights an electrochemical reductive coupling as well as an intramolecular hydrogen atom transfer Giese addition to establish the 6,5-transcarbon skeleton found in the vitamin D family. Finally, a late-stage decarboxylative cross-coupling approach allowed for the facile preparation of various C20-arylated derivatives that show promising biological activity in an initial bioassay.
Collapse
|
24
|
Hetzler BE, Trauner D, Lawrence AL. Natural product anticipation through synthesis. Nat Rev Chem 2022; 6:170-181. [PMID: 36747591 PMCID: PMC9899497 DOI: 10.1038/s41570-021-00345-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
Natural product synthesis remains one of the most vibrant and intellectually rewarding areas of chemistry, although the justifications for pursuing it have evolved over time. In the early years, the emphasis lay on structure elucidation and confirmation through synthesis, as exemplified by celebrated studies on cocaine, morphine, strychnine and chlorophyll. This was followed by a phase where the sheer demonstration that highly complex molecules could be recreated in the laboratory in a rational manner was enough to justify the economic expense and intellectual agonies of a synthesis. Since then, syntheses of natural products have served as platforms for the demonstration of elegant strategies, for inventing new methodology 'on the fly' or to demonstrate the usefulness and scope of methods established with simpler molecules. We now add another aspect that we find fascinating, viz. 'natural product anticipation'. In this Review, we survey cases where the synthesis of a compound in the laboratory has preceded its isolation from nature. The focus of our Review lies on examples where this anticipation of a natural product has triggered a successful search or where synthesis and isolation have occurred independently. Finally, we highlight cases where a potential natural product structure has been suggested as a result of synthetic endeavours but not yet confirmed by isolation, inviting further collaborations between synthetic and natural product chemists.
Collapse
Affiliation(s)
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, USA
| | | |
Collapse
|
25
|
Miao Y, Li X, Zhang M, Fan H, Gui J. Synthesis of 9,11-Secosteroids Pinnisterol E, Glaciasterol B, and 6-Keto-aplidiasterol B. Org Lett 2022; 24:1684-1688. [PMID: 35194999 DOI: 10.1021/acs.orglett.2c00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 10-step gram-scale synthesis of 9,11-secosteroid pinnisterol E from the inexpensive ergosterol is reported. This synthesis features a series of highly selective redox transformations such as regioselective olefin hydrogenation (PtO2), acid-sensitive endoperoxide reduction (Al-Ni alloy, Zn), and regio- and diastereoselective dienone oxidation. The robustness of this strategy is clearly demonstrated through the formal synthesis of 11(9 → 7)abeo-steroid pleurocin B and the divergent synthesis of 9,11-secosteroids glaciasterol B and 6-keto-aplidiasterol B from the inexpensive cholesterol.
Collapse
Affiliation(s)
- Yinlong Miao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xinghui Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Mengqing Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huafang Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
26
|
Cuan Y, Li W, Dou Y, Yang G. Facile and scalable synthesis of baphicacanthin A by a two-pot procedure. Nat Prod Res 2021; 37:1439-1443. [PMID: 34852687 DOI: 10.1080/14786419.2021.2011275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Facile two-pot total synthesis of baphicacanthin A, a natural phenoxazinone alkaloid isolated from the roots of Baphicacanthus cusia which has been utilized as a traditional chinese medicine to effectively treat disease caused by coronavirus, has been developed from simple and commercially available starting materials. Catalytic aerobic oxidative cross-cyclocondensation of equimolar 2-aminophenol and 3-methoxy-2-hydroxylphenol in water was used to construct the key molecular skeleton 2-hydroxy-3H-phenoxazin-3-one. Gram scale synthesis was realized in 80% overall yield with practical convenience.
Collapse
Affiliation(s)
- Yalong Cuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Wenhao Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yingchao Dou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Guanyu Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Huo H, Jiang W, Sun F, Li J, Shi B. Synthesis and biological evaluation of novel steroidal pyrazole amides as highly potent anticancer agents. Steroids 2021; 176:108931. [PMID: 34655595 DOI: 10.1016/j.steroids.2021.108931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
A series of thirty-six steroidal pyrazole amides, divided into two categories based on their main skeletons were designed and synthesized via a five-step synthetic route. The final product is obtained through Pinnick oxidation of pyrazole aldehydes to yield the corresponding acids, which then underwent amidation to afford the target products efficiently under mild reaction conditions. Structures of the desired compounds were confirmed by 1H NMR, 13C NMR, high resolution mass spectrometry; X-ray structural characterization of compound 16n was also obtained. The synthesized compounds were screened for their antiproliferative activity against four cancer cell lines (Pc-3 A549, Hela, HepG2) using the SRB method. Amides 10n, 16n, and 16p-16t exhibited moderate to high cytotoxic activities with IC50 values ranging from 2.05 to 8.73 μM. Of note, the hydrochloride derivative 16p displayed the highest activity towards PC-3 cells with IC50 values of 2.05 μM. Analysis of structure-activity relationships indicated that the presence of the diamine moiety and the aqueous solubility of the derivatives were vital factors for antiproliferative potency. Furthermore, molecule 16p induced PC-3 cells apoptosis and arrested cell cycle at G1 phase in a dose-dependent manner.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Science, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Weiqi Jiang
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feifei Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Baojun Shi
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
28
|
Wang Y, Tian H, Gui J. Gram-Scale Synthesis of Bufospirostenin A by a Biomimetic Skeletal Rearrangement Approach. J Am Chem Soc 2021; 143:19576-19586. [PMID: 34762408 DOI: 10.1021/jacs.1c10067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bufospirostenin A, which was the first spirostanol to be isolated from an animal, possesses an unprecedented 5/7/6/5/5/6 hexacyclic framework. Herein, we report two biomimetic syntheses of this natural product in just seven or nine steps from a readily available steroidal lactone. Key features of the syntheses include a photosantonin rearrangement and a Wagner-Meerwein rearrangement for rapid construction of the rearranged A/B ring system, as well as a cobalt-mediated olefin hydroselenylation and a selenide E2 reaction to accomplish a challenging olefin transposition. Our syntheses provide experimental support for the biogenetic pathway to 5(10→1)abeo-steroids that we have proposed.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| |
Collapse
|
29
|
Concise Large-Scale Synthesis of Tomatidine, A Potent Antibiotic Natural Product. Molecules 2021; 26:molecules26196008. [PMID: 34641551 PMCID: PMC8512692 DOI: 10.3390/molecules26196008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Tomatidine has recently generated a lot of interest amongst the pharmacology, medicine, and biology fields of study, especially for its newfound activity as an antibiotic agent capable of targeting multiple strains of bacteria. In the light of its low natural abundance and high cost, an efficient and scalable multi-gram synthesis of tomatidine has been developed. This synthesis uses a Suzuki-Miyaura-type coupling reaction as a key step to graft an enantiopure F-ring side chain to the steroidal scaffold of the natural product, which was accessible from low-cost and commercially available diosgenin. A Lewis acid-mediated spiroketal opening followed by an azide substitution and reduction sequence is employed to generate the spiroaminoketal motif of the natural product. Overall, this synthesis produced 5.2 g in a single pass in 15 total steps and 15.2% yield using a methodology that is atom economical, scalable, and requires no flash chromatography purifications.
Collapse
|
30
|
Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Advances in the E → Z Isomerization of Alkenes Using Small Molecule Photocatalysts. Chem Rev 2021; 122:2650-2694. [PMID: 34449198 DOI: 10.1021/acs.chemrev.1c00324] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Geometrical E → Z alkene isomerization is intimately entwined in the historical fabric of organic photochemistry and is enjoying a renaissance (Roth et al. Angew. Chem., Int. Ed. Engl. 1989 28, 1193-1207). This is a consequence of the fundamental stereochemical importance of Z-alkenes, juxtaposed with frustrations in thermal reactivity that are rooted in microscopic reversibility. Accessing excited state reactivity paradigms allow this latter obstacle to be circumnavigated by exploiting subtle differences in the photophysical behavior of the substrate and product chromophores: this provides a molecular basis for directionality. While direct irradiation is operationally simple, photosensitization via selective energy transfer enables augmentation of the alkene repertoire to include substrates that are not directly excited by photons. Through sustained innovation, an impressive portfolio of tailored small molecule catalysts with a range of triplet energies are now widely available to facilitate contra-thermodynamic and thermo-neutral isomerization reactions to generate Z-alkene fragments. This review is intended to serve as a practical guide covering the geometric isomerization of alkenes enabled by energy transfer catalysis from 2000 to 2020, and as a logical sequel to the excellent treatment by Dugave and Demange (Chem. Rev. 2003 103, 2475-2532). The mechanistic foundations underpinning isomerization selectivity are discussed together with induction models and rationales to explain the counterintuitive directionality of these processes in which very small energy differences distinguish substrate from product. Implications for subsequent stereospecific transformations, application in total synthesis, regioselective polyene isomerization, and spatiotemporal control of pre-existing alkene configuration in a broader sense are discussed.
Collapse
Affiliation(s)
- Tomáš Neveselý
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Max Wienhold
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John J Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
31
|
Biletskyi B, Colonna P, Masson K, Parrain JL, Commeiras L, Chouraqui G. Small rings in the bigger picture: ring expansion of three- and four-membered rings to access larger all-carbon cyclic systems. Chem Soc Rev 2021; 50:7513-7538. [PMID: 34002179 DOI: 10.1039/d0cs01396j] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The release of the inherent ring strain of cyclobutane and cyclopropane derivatives allows a rapid build-up of molecular complexity. This review highlights the state-of-the-art of the ring expansions of three- and four-membered cycles and is organised by types of reactions with emphasis on the reaction mechanisms. Selected examples are discussed to illustrate the synthetic potential of this elegant synthetic tool.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Kévin Masson
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
32
|
Prabhakar Kale A, Nikolaienko P, Smirnova K, Rueping M. Intramolecular Electrochemical Oxybromination of Olefins for the Synthesis of Isoxazolines in Batch and Continuous Flow. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ajit Prabhakar Kale
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pavlo Nikolaienko
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kristina Smirnova
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
33
|
Daley SK, Cordell GA. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. JOURNAL OF NATURAL PRODUCTS 2021; 84:871-897. [PMID: 33534564 DOI: 10.1021/acs.jnatprod.0c01195] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A selection of the established and recently characterized alkaloids from the exploration of plant- and some marine-associated endophytic fungi is reviewed, with reference to alkaloids of biological significance.
Collapse
Affiliation(s)
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
34
|
Peters DS, Pitts CR, McClymont KS, Stratton TP, Bi C, Baran PS. Ideality in Context: Motivations for Total Synthesis. Acc Chem Res 2021; 54:605-617. [PMID: 33476518 DOI: 10.1021/acs.accounts.0c00821] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Total synthesis-the ultimate proving ground for the invention and field-testing of new methods, exploration of disruptive strategies, final structure confirmation, and empowerment of medicinal chemistry on natural products-is one of the oldest and most enduring subfields of organic chemistry. In the early days of this field, its sole emphasis focused on debunking the concept of vitalism, that living organisms could create forms of matter accessible only to them. Emphasis then turned to the use of synthesis to degrade and reconstitute natural products to establish structure and answer questions about biosynthesis. It then evolved to not only an intricate science but also a celebrated form of art. As the field progressed, a more orderly and logical approach emerged that served to standardize the process. These developments even opened up the possibility of computer-aided design using retrosynthetic analysis. Finally, the elevation of this field to even higher levels of sophistication showed that it was feasible to synthesize any natural product, regardless of complexity, in a laboratory. During this remarkable evolution, as has been reviewed elsewhere, many of the principles and methods of organic synthesis were refined and galvanized. In the modern era, students and practitioners are still magnetically attracted to this field due to the excitement of the journey, the exhilaration of creation, and the opportunity to invent solutions to challenges that still persist. Contemporary total synthesis is less concerned with demonstrating a proof of concept or a feasible approach but rather aims for increased efficiency, scalability, and even "ideality." In general, the molecules of Nature are created biosynthetically with levels of practicality that are still unimaginable using the tools of modern synthesis. Thus, as the community strives to do more with less (i.e., innovation), total synthesis is now focused on a pursuit for simplicity rather than a competition for maximal complexity. In doing so, the practitioner must devise outside-the-box strategies supplemented with forgotten or newly invented methods to reduce step count and increase the overall economy of the approach. The downstream applications of this pursuit not only empower students who often go on to apply these skills in the private sector but also lead to new discoveries that can impact numerous disciplines of societal importance. This account traces some select case studies from our laboratory over the past five years that vividly demonstrate our own motivation for dedicating so much effort to this classic field. In aiming for simplicity, we focus on the elusive goal of achieving ideality, a term that, when taken in the proper context, can serve as a guiding light to point the way to furthering progress in organic synthesis.
Collapse
Affiliation(s)
- David S. Peters
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cody Ross Pitts
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyle S. McClymont
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas P. Stratton
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cheng Bi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Abstract
The field of total synthesis has reached a stage in which emphasis has been increasingly focused on synthetic efficiency rather than merely achieving the synthesis of a target molecule. The pursuit of synthetic efficiency, typically represented by step count and overall yield, is a rich source of inspiration and motivation for synthetic chemists to invent innovative strategies and methods. Among them, convergent strategy has been well recognized as an effective approach to improve efficiency. This strategy generally involves coupling of fragments with similar complexity to furnish the target molecule via subsequent cyclization or late-stage functionalization. Thus, methodologies that enable effective connection of fragments are critical to devising a convergent plan. In our laboratory, convergent strategy has served as a long-standing principle for pursuing efficient synthesis during the course of planning and implementing synthetic projects. In this Account, we summarize our endeavors in the convergent synthesis of natural products over the last ten years. We show how we identify reasonable bond disconnections and employ enabling synthetic methodologies to maximize convergency, leading to the efficient syntheses of over two-dozen highly complex molecules from eight disparate families.In detail, we categorize our work into three parts based on the diverse reaction types for fragment assembly. First, we demonstrate the application of a powerful single-electron reducing agent, SmI2, in a late-stage cyclization step, forging the polycyclic skeletons of structurally fascinating Galbulimima alkaloids and Leucosceptrum sesterterpenoids. Next, we showcase how three different types of cycloaddition reactions can simultaneously construct two challenging C-C bonds in a single step, providing concise entries to three distinct families, namely, spiroquinazoline alkaloids, gracilamine, and kaurane diterpenoids. In the third part, we describe convergent assembly of ent-kaurane diterpenoids, gelsedine-type alkaloids, and several drug molecules via employing some bifunctional synthons. To access highly oxidized ent-kaurane diterpenoids, we introduce the hallmark bicyclo[3.2.1]octane ring system at an early stage, and then execute coupling and cyclization by means of a Hoppe's homoaldol reaction and a Mukaiyama-Michael-type addition, respectively. Furthermore, we showcase how the orchestrated combination of an asymmetric Michael addition, a tandem oxidation-aldol reaction and a pinacol rearrangement can dramatically improve the efficiency in synthesizing gelsedine-type alkaloids, with nary a protecting group. Finally, to address the supply issue of several drugs, including anti-influenza drug zanamivir and antitumor agent Et-743, we exploit scalable and practical approaches to provide advantages over current routes in terms of cost, ease of execution, and efficiency.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
| |
Collapse
|
36
|
Senapati S, Ramana CV. A concise/catalytic approach for the construction of the C14-C28 fragment of eribulin. Org Biomol Chem 2021; 19:4542-4550. [PMID: 33949579 DOI: 10.1039/d1ob00661d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A simple approach for the synthesis of the C14-C28 fragment of eribulin has been developed by employing a one-pot gold-catalyzed alkynol cyclization/Kishi reduction to construct the 1,5-cis-tetrahydropyran unit and a cross-metathesis/Sharpless asymmetric dihydroxylation-cycloetherification to install the 1,4-trans-tetrahydrofuran ring. Use of easily accessible building blocks, ease of operation and catalytic transformations as key reactions for the construction of THF/THP units highlight the current approach.
Collapse
Affiliation(s)
- Sibadatta Senapati
- Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
37
|
Paul D, Kundu A, Saha S, Goswami RK. Total synthesis: the structural confirmation of natural products. Chem Commun (Camb) 2021; 57:3307-3322. [DOI: 10.1039/d1cc00241d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article highlights total synthesis as one of the reliable tools for the structural confirmation of natural products.
Collapse
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Ashis Kundu
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Sanu Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajib Kumar Goswami
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
38
|
Jiang Y, McNamee RE, Smith PJ, Sozanschi A, Tong Z, Anderson EA. Advances in polycyclization cascades in natural product synthesis. Chem Soc Rev 2021; 50:58-71. [DOI: 10.1039/d0cs00768d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cascade reactions are among the most powerful means to achieve the construction of multiple ring systems in a single step. This tutorial review describes recent advances in the use of polycyclization cascades in natural product synthesis.
Collapse
Affiliation(s)
- Yubo Jiang
- Chemistry Research Laboratory
- Oxford
- UK
- Faculty of Science
- Kunming University of Science and Technology
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Georges Massiot
- Université de Reims Champagne-Ardenne Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Case postale 44, UFR des Sciences Exactes et Naturelles, BP 1039 51687 Reims Cedex 2 France
| |
Collapse
|
40
|
Iheagwam FN, Rotimi SO. Computer-Aided Analysis of Multiple SARS-CoV-2 Therapeutic Targets: Identification of Potent Molecules from African Medicinal Plants. SCIENTIFICA 2020; 2020:1878410. [PMID: 32963884 PMCID: PMC7492903 DOI: 10.1155/2020/1878410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic, which started in Wuhan, China, has spread rapidly over the world with no known antiviral therapy or vaccine. Interestingly, traditional Chinese medicine helped in flattening the pandemic curve in China. In this study, molecules from African medicinal plants were analysed as potential candidates against multiple SARS-CoV-2 therapeutic targets. Sixty-five molecules from the ZINC database subset (AfroDb Natural Products) were virtually screened with some reported repurposed therapeutics against six SARS-CoV-2 and two human targets. Molecular docking, druglikeness, absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the best hits were further simulated. Of the 65 compounds, only three, namely, 3-galloylcatechin, proanthocyanidin B1, and luteolin 7-galactoside found in almond (Terminalia catappa), grape (Vitis vinifera), and common verbena (Verbena officinalis), were able to bind to all eight targets better than the reported repurposed drugs. The findings suggest these molecules may play a role as therapeutic leads in tackling this pandemic due to their multitarget activity.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, P.M.B. 1023, Ota, Ogun, Nigeria
- Covenant University Public Health and Wellness Research Cluster (CUPHWERC), College of Science and Technology, Covenant University, Canaanland, P.M.B. 1023, Ota, Ogun, Nigeria
| | - Solomon Oladapo Rotimi
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, P.M.B. 1023, Ota, Ogun, Nigeria
| |
Collapse
|
41
|
Hardy M, Wright BA, Bachman JL, Boit TB, Haley HMS, Knapp RR, Lusi RF, Okada T, Tona V, Garg NK, Sarpong R. Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS CENTRAL SCIENCE 2020; 6:1017-1030. [PMID: 32719821 PMCID: PMC7336722 DOI: 10.1021/acscentsci.0c00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The SARS-CoV-2 pandemic has prompted scientists from many disciplines to work collaboratively toward an effective response. As academic synthetic chemists, we examine how best to contribute to this ongoing effort.
Collapse
Affiliation(s)
- Melissa
A. Hardy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brandon A. Wright
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - J. Logan Bachman
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Timothy B. Boit
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Hannah M. S. Haley
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rachel R. Knapp
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Robert F. Lusi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Taku Okada
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Veronica Tona
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Cao MY, Ma BJ, Lao ZQ, Wang H, Wang J, Liu J, Xing K, Huang YH, Gan KJ, Gao W, Wang H, Hong X, Lu HH. Optically Active Flavaglines-Inspired Molecules by a Palladium-Catalyzed Decarboxylative Dearomative Asymmetric Allylic Alkylation. J Am Chem Soc 2020; 142:12039-12045. [PMID: 32584568 DOI: 10.1021/jacs.0c05113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the aid of a class of newly discovered Trost-type bisphosphine ligands bearing a chiral cycloalkane framework, the Pd-catalyzed decarboxylative dearomative asymmetric allylic alkylation (AAA) of benzofurans was achieved with high efficiency [0.2-1.0 mol% Pd2(dba)3/L], good generality, and high enantioselectivity (>30 examples, 82-99% yield and 90-96% ee). Moreover, a diversity-oriented synthesis (DOS) of previously unreachable flavaglines is disclosed. It features a reliable and scalable sequence of the freshly developed Tsuji-Trost-Stoltz AAA, a Wacker-Grubbs-Stoltz oxidation, an intra-benzoin condensation, and a conjugate addition, which allows the efficient construction of the challenging and compact cyclopenta[b]benzofuran scaffold with contiguous stereocenters. This strategy offers a new avenue for developing flavagline-based drugs.
Collapse
Affiliation(s)
- Meng-Yue Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhi-Qi Lao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hongliang Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Juan Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kuan Xing
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yu-Hao Huang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei Gao
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
43
|
Varga S, Angyal P, Martin G, Egyed O, Holczbauer T, Soós T. Total Syntheses of (−)‐Minovincine and (−)‐Aspidofractinine through a Sequence of Cascade Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Szilárd Varga
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Péter Angyal
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Gábor Martin
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Orsolya Egyed
- Instrumentation Center Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
- Instrumentation Center Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Tibor Soós
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| |
Collapse
|
44
|
Varga S, Angyal P, Martin G, Egyed O, Holczbauer T, Soós T. Total Syntheses of (-)-Minovincine and (-)-Aspidofractinine through a Sequence of Cascade Reactions. Angew Chem Int Ed Engl 2020; 59:13547-13551. [PMID: 32351014 PMCID: PMC7497198 DOI: 10.1002/anie.202004769] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 12/31/2022]
Abstract
We report 8‐step syntheses of (−)‐minovincine and (−)‐aspidofractinine using easily available and inexpensive reagents and catalyst. A key element of the strategy was the utilization of a sequence of cascade reactions to rapidly construct the penta‐ and hexacyclic frameworks. These cascade transformations included organocatalytic Michael‐aldol condensation, a multistep anionic Michael‐SN2 cascade reaction, and Mannich reaction interrupted Fischer indolization. To streamline the synthetic routes, we also investigated the deliberate use of steric effect to secure various chemo‐ and regioselective transformations.
Collapse
Affiliation(s)
- Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Gábor Martin
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Orsolya Egyed
- Instrumentation Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary.,Instrumentation Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| |
Collapse
|
45
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
46
|
Schwan J, Kleoff M, Heretsch P, Christmann M. Five-Step Synthesis of Yaequinolones J1 and J2. Org Lett 2020; 22:675-678. [PMID: 31909626 DOI: 10.1021/acs.orglett.9b04455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A concise synthesis of yaequinolones J1 and J2 is reported. The route is based on the aryne insertion into the σ-C-N bond of an unsymmetric imide followed by a diastereoselective aldol cyclization of the resulting N-acylated aminobenzophenone. The chromene motif is generated in the first step by an organocatalytic tandem Knoevenagel electrocyclization of citral and 2-bromoresorcinol. The approach adheres to the ideality principle, using almost exclusively strategic bond-forming reactions.
Collapse
Affiliation(s)
- Johannes Schwan
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Merlin Kleoff
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Philipp Heretsch
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Mathias Christmann
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
47
|
Cremosnik GS, Liu J, Waldmann H. Guided by evolution: from biology oriented synthesis to pseudo natural products. Nat Prod Rep 2020; 37:1497-1510. [DOI: 10.1039/d0np00015a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview and historical context to two concepts for the design of natural product-inspired compound libraries and highlights the used synthetic methodologies.
Collapse
Affiliation(s)
- Gregor S. Cremosnik
- Department of Chemical Biology
- Max-Planck-Institute of Molecular Physiology
- 44227 Dortmund
- Germany
| | - Jie Liu
- Department of Chemical Biology
- Max-Planck-Institute of Molecular Physiology
- 44227 Dortmund
- Germany
- Faculty of Chemistry and Chemical Biology
| | - Herbert Waldmann
- Department of Chemical Biology
- Max-Planck-Institute of Molecular Physiology
- 44227 Dortmund
- Germany
- Faculty of Chemistry and Chemical Biology
| |
Collapse
|
48
|
Kühlborn J, Groß J, Opatz T. Making natural products from renewable feedstocks: back to the roots? Nat Prod Rep 2020; 37:380-424. [DOI: 10.1039/c9np00040b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the utilization of biomass-derived building blocks in the total synthesis of natural products.
Collapse
Affiliation(s)
- Jonas Kühlborn
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Jonathan Groß
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
49
|
Tanifuji R, Minami A, Oguri H, Oikawa H. Total synthesis of alkaloids using both chemical and biochemical methods. Nat Prod Rep 2020; 37:1098-1121. [DOI: 10.1039/c9np00073a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoenzymatic approach to synthesize structurally complex natural alkaloids (tetrahydroisoquinoline antibiotics, indole diterpenes, and monoterpene indole alkaloids) has been reviewed.
Collapse
Affiliation(s)
- Ryo Tanifuji
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Atsushi Minami
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Hiroki Oguri
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Hideaki Oikawa
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
50
|
Abstract
Covering: 1989-2017 Saponins are characteristic metabolites of starfish and sea cucumbers, and occasionally are also found in sponges, soft coral, and small fish. These steroid or triterpenoid glycosides often show remarkable biological and pharmacological activities, such as antifungal, antifouling, shark repellent, antitumor and anti-inflammatory activities. Over one thousand marine saponins have been characterized; the majority of them can be categorized into three major structural types, i.e., asterosaponins, polyhydroxysteroid glycosides, and holostane glycosides. Thus far, only 12 marine saponins have been synthesized; those representing the major types were successfully synthesized recently. The syntheses involve preparation of the aglycones from the terrestrial steroid or triterpene materials, installation of the carbohydrate units, and manipulation of the protecting groups. Herein, we provide a comprehensive review on these syntheses.
Collapse
Affiliation(s)
- Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | | | | | | |
Collapse
|