1
|
Rotondi SMC, Canepa P, Angeli E, Canepa M, Cavalleri O. DNA Sensing Platforms: Novel Insights into Molecular Grafting Using Low Perturbative AFM Imaging. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094557. [PMID: 37177760 PMCID: PMC10181596 DOI: 10.3390/s23094557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
By using AFM as a nanografting tool, we grafted micrometer-sized DNA platforms into inert alkanethiol SAMs. Tuning the grafting conditions (surface density of grafting lines and scan rate) allowed us to tailor the molecular density of the DNA platforms. Following the nanografting process, AFM was operated in the low perturbative Quantitative Imaging (QI) mode. The analysis of QI AFM images showed the coexistence of molecular domains of different heights, and thus different densities, within the grafted areas, which were not previously reported using contact AFM imaging. Thinner domains corresponded to low-density DNA regions characterized by loosely packed, randomly oriented DNA strands, while thicker domains corresponded to regions with more densely grafted DNA. Grafting with densely spaced and slow scans increased the size of the high-density domains, resulting in an overall increase in patch height. The structure of the grafted DNA was compared to self-assembled DNA, which was assessed through nanoshaving experiments. Exposing the DNA patches to the target sequence produced an increase in the patch height, indicating that hybridization was accomplished. The relative height increase of the DNA patches upon hybridization was higher in the case of lower density patches due to hybridization leading to a larger molecular reorganization. Low density DNA patches were therefore the most suitable for targeting oligonucleotide sequences.
Collapse
Affiliation(s)
| | - Paolo Canepa
- Dipartimento di Fisica and Optmatlab, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Elena Angeli
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Maurizio Canepa
- Dipartimento di Fisica and Optmatlab, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ornella Cavalleri
- Dipartimento di Fisica and Optmatlab, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
2
|
Adedeji Olulana AF, Choi D, Inverso V, Redhu SK, Vidonis M, Crevatin L, Nicholson AW, Castronovo M. Noncanonical DNA Cleavage by BamHI Endonuclease in Laterally Confined DNA Monolayers Is a Step Function of DNA Density and Sequence. Molecules 2022; 27:5262. [PMID: 36014501 PMCID: PMC9416302 DOI: 10.3390/molecules27165262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cleavage of DNA at noncanonical recognition sequences by restriction endonucleases (star activity) in bulk solution can be promoted by global experimental parameters, including enzyme or substrate concentration, temperature, pH, or buffer composition. To study the effect of nanoscale confinement on the noncanonical behaviour of BamHI, which cleaves a single unique sequence of 6 bp, we used AFM nanografting to generate laterally confined DNA monolayers (LCDM) at different densities, either in the form of small patches, several microns in width, or complete monolayers of thiol-modified DNA on a gold surface. We focused on two 44-bp DNAs, each containing a noncanonical BamHI site differing by 2 bp from the cognate recognition sequence. Topographic AFM imaging was used to monitor end-point reactions by measuring the decrease in the LCDM height with respect to the surrounding reference surface. At low DNA densities, BamHI efficiently cleaves only its cognate sequence while at intermediate DNA densities, noncanonical sequence cleavage occurs, and can be controlled in a stepwise (on/off) fashion by varying the DNA density and restriction site sequence. This study shows that endonuclease action on noncanonical sites in confined nanoarchitectures can be modulated by varying local physical parameters, independent of global chemical parameters.
Collapse
Affiliation(s)
- Abimbola F. Adedeji Olulana
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Regional Centre for Rare Diseases, University Hospital Udine, 33100 Udine, Italy
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Dianne Choi
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Vincent Inverso
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Shiv K. Redhu
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Marco Vidonis
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Department of Chemistry, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Crevatin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Allen W. Nicholson
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Matteo Castronovo
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Regional Centre for Rare Diseases, University Hospital Udine, 33100 Udine, Italy
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
3
|
Speyer K, Pastorino C. Pressure responsive gating in nanochannels coated by semiflexible polymer brushes. SOFT MATTER 2019; 15:937-946. [PMID: 30644495 DOI: 10.1039/c8sm02388c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study by coarse-grained molecular-dynamics simulations the liquid flow in a slit channel with the inner walls coated by semiflexible polymer brushes. The distance between walls is close enough such that polymers grafted to opposing walls interact among each other and form bundles across the channel in poor solvent conditions. The solvent is simulated explicitly, including particles that fill the interior of the channel. The system is studied in equilibrium and under flow, by applying a constant body force on each particle of the system. A non-linear relation between external force and flow rate is observed, for a particular set of parameters. This non-linear response is linked to a morphological change of the polymer brushes. For large enough forces, the bundle structures formed across the channel break as the chains lean in the direction of the flow, and clear the middle of the channel. This morphological alteration of the polymer configurations translates in a sudden increase in the flow rate, acting as a pressure-responsive gate. The relation between flow and external force is investigated for various parameters, such as grafting density, quality of the solvent and polymer bending rigidity. We observe a non-monotonic dependence of the flow as a function of the polymer rigidity, and find an optimum value for the persistence length. We also find that the force threshold at which the morphological changes happen in the polymer brush, depends linearly on the grafting density. These findings can lead to new flow control techniques in micro and nano-fluidic devices.
Collapse
Affiliation(s)
- K Speyer
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina.
| | | |
Collapse
|
4
|
Shen ZL, Tian WD, Chen K, Ma YQ. Molecular dynamics simulation of G-actin interacting with PAMAM dendrimers. J Mol Graph Model 2018; 84:145-151. [DOI: 10.1016/j.jmgm.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/13/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022]
|
5
|
Hao X, Josephs EA, Gu Q, Ye T. Molecular conformations of DNA targets captured by model nanoarrays. NANOSCALE 2017; 9:13419-13424. [PMID: 28875997 DOI: 10.1039/c7nr04715k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An open question in single molecule nanoarrays is how the chemical and morphological heterogeneities of the solid support affect the properties of biomacromolecules. We generated arrays that allowed individually-resolvable DNA molecules to interact with tailored surface heterogeneities and revealed how molecular conformations are impacted by surface interactions.
Collapse
Affiliation(s)
- X Hao
- Chemistry and Chemical Biology, University of California, Merced, California 95343, USA.
| | | | | | | |
Collapse
|
6
|
Rotella C, Doni G, Bosco A, Castronovo M, De Vita A, Casalis L, Pavan GM, Parisse P. Site accessibility tailors DNA cleavage by restriction enzymes in DNA confined monolayers. NANOSCALE 2017; 9:6399-6405. [PMID: 28453019 DOI: 10.1039/c7nr00966f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density-tunable nanografted monolayers (NAMs) of short oligonucleotide sequences on gold surfaces show novel properties that make them suitable for advanced biosensing applications, and in particular to study the effects of crowding and confinement on biomolecular interactions. Here, combining atomic force microscopy nanolithography, topography measurements and coarse-grained molecular dynamics simulations, we investigated restriction enzyme reaction mechanisms within confined DNA brushes highlighting the role played by the DNA sequence conformation and restriction site position along the chain, respectively, in determining the accessibility of the enzyme, and its consequent cleavage efficiency.
Collapse
Affiliation(s)
- Chiara Rotella
- Elettra Sincrotrone Trieste, s.s. 14 km 163.5 in Area Science Park, Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Enciso AE, Doni G, Nifosì R, Palazzesi F, Gonzalez R, Ellsworth AA, Coffer JL, Walker AV, Pavan GM, Mohamed AA, Simanek EE. Facile synthesis of stable, water soluble, dendron-coated gold nanoparticles. NANOSCALE 2017; 9:3128-3132. [PMID: 28211928 DOI: 10.1039/c6nr09679d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Upon reduction with sodium borohydride, diazonium tetrachloroaurate salts of triazine dendrons yield dendron-coated gold nanoparticles connected by a gold-carbon bond. These robust nanoparticles are stable in water and toluene solutions for longer than one year and present surface groups that can be reacted to change surface chemistry and manipulate solubility. Molecular modeling was used to provide insight on the hydration of the nanoparticles and their observed solubilties.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | - Giovanni Doni
- Department of Physics, King's College, London Strand, London WC2R 2NS, UK
| | - Riccardo Nifosì
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Ferruccio Palazzesi
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zurich, Switzerland and Facoltá di Informatica, Istituto di Scienze Computazionali, Universitá della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Roberto Gonzalez
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | | | - Jeffery L Coffer
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| | - Amy V Walker
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA and Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Ahmed A Mohamed
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA and Department of Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Eric E Simanek
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|
8
|
Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nat Commun 2015; 6:6234. [PMID: 25698667 PMCID: PMC4346625 DOI: 10.1038/ncomms7234] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.
Collapse
|
9
|
Giamblanco N, Conoci S, Russo D, Marletta G. Single-step label-free hepatitis B virus detection by a piezoelectric biosensor. RSC Adv 2015. [DOI: 10.1039/c5ra03467a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Probe densityvs.genome recognition selectivity.
Collapse
Affiliation(s)
- Nicoletta Giamblanco
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
- Department of Chemical Sciences
- University of Catania and CSGI
- 95125 Catania
- Italy
| | | | | | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
- Department of Chemical Sciences
- University of Catania and CSGI
- 95125 Catania
- Italy
| |
Collapse
|
10
|
Beltrán E, Garzoni M, Feringán B, Vancheri A, Barberá J, Serrano JL, Pavan GM, Giménez R, Sierra T. Self-organization of star-shaped columnar liquid crystals with a coaxial nanophase segregation revealed by a combined experimental and simulation approach. Chem Commun (Camb) 2015; 51:1811-4. [DOI: 10.1039/c4cc08602c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coaxial stacking of two different functional units revealed by combining X-ray and MD simulation.
Collapse
Affiliation(s)
- Eduardo Beltrán
- Departamento de Química Orgánica
- Instituto de Ciencia de Materiales de Aragón (ICMA) - Universidad de Zaragoza-CSIC
- 50009 Zaragoza
- Spain
| | - Matteo Garzoni
- Department of Innovative Technologies
- University of Applied Sciences and Arts of Southern Switzerland
- Manno 6928
- Switzerland
| | - Beatriz Feringán
- Departamento de Química Orgánica
- Instituto de Ciencia de Materiales de Aragón (ICMA) - Universidad de Zaragoza-CSIC
- 50009 Zaragoza
- Spain
| | - Alberto Vancheri
- Department of Innovative Technologies
- University of Applied Sciences and Arts of Southern Switzerland
- Manno 6928
- Switzerland
| | - Joaquín Barberá
- Departamento de Química Orgánica
- Instituto de Ciencia de Materiales de Aragón (ICMA) - Universidad de Zaragoza-CSIC
- 50009 Zaragoza
- Spain
| | - José Luis Serrano
- Departamento de Química Orgánica
- Instituto de Nanociencia de Aragón. Universidad de Zaragoza
- 50018 Zaragoza
- Spain
| | - Giovanni M. Pavan
- Department of Innovative Technologies
- University of Applied Sciences and Arts of Southern Switzerland
- Manno 6928
- Switzerland
| | - Raquel Giménez
- Departamento de Química Orgánica
- Instituto de Ciencia de Materiales de Aragón (ICMA) - Universidad de Zaragoza-CSIC
- 50009 Zaragoza
- Spain
| | - Teresa Sierra
- Departamento de Química Orgánica
- Instituto de Ciencia de Materiales de Aragón (ICMA) - Universidad de Zaragoza-CSIC
- 50009 Zaragoza
- Spain
| |
Collapse
|
11
|
Nkoua Ngavouka MD, Bosco A, Casalis L, Parisse P. Determination of Average Internucleotide Distance in Variable Density ssDNA Nanobrushes in the Presence of Different Cations Species. Macromolecules 2014; 47:8748-8753. [DOI: 10.1021/ma501712a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maryse D. Nkoua Ngavouka
- PhD
School in Nanotechnology and Nanoscience, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
- Elettra-Sincrotrone
Trieste, S.C.p.A., Strada Statale 14-km
163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| | - Alessandro Bosco
- Elettra-Sincrotrone
Trieste, S.C.p.A., Strada Statale 14-km
163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| | - Loredana Casalis
- Elettra-Sincrotrone
Trieste, S.C.p.A., Strada Statale 14-km
163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
- INSTM-ST Unit, Strada Statale 14-km 163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| | - Pietro Parisse
- INSTM-ST Unit, Strada Statale 14-km 163,5 in AREA Science Park, I-34149, Basovizza Trieste, Italy
| |
Collapse
|
12
|
DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 2014; 5:3448. [DOI: 10.1038/ncomms4448] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/13/2014] [Indexed: 12/17/2022] Open
|
13
|
Hanna M, Munshi M, Kedzierski NA, Chung PN, Huang T, Mok AK, Lukeman PS. Photocleavage control of nucleated DNA nanosystems--the influence of surface strand sterics. NANOSCALE 2014; 6:2094-2096. [PMID: 24402244 DOI: 10.1039/c3nr05875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We use sterically inaccessible 'seed' strands, released from a surface into solution by photocleavage to initiate a nucleated DNA polymerization reaction. We demonstrate control of the quantity of 'seed' release and that hairpin steric protection of the 'seed' leads to less 'leaky' surfaces. This polymerization is a model system for surface-photocleavage initiation of sub-stoichiometric reaction cascades; these cascades should find use as a component of labs-on-chips capable of bioanalytical and DNA-computing tasks.
Collapse
Affiliation(s)
- Morcos Hanna
- Chemistry Department, St. John's University, 8000 Utopia Parkway Queens, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|