1
|
de-la-Huerta-Sainz S, Ballesteros A, Cordero NA. Electric Field Effects on Curved Graphene Quantum Dots. MICROMACHINES 2023; 14:2035. [PMID: 38004893 PMCID: PMC10672820 DOI: 10.3390/mi14112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
The recent and continuous research on graphene-based systems has opened their usage to a wide range of applications due to their exotic properties. In this paper, we have studied the effects of an electric field on curved graphene nanoflakes, employing the Density Functional Theory. Both mechanical and electronic analyses of the system have been made through its curvature energy, dipolar moment, and quantum regeneration times, with the intensity and direction of a perpendicular electric field and flake curvature as parameters. A stabilisation of non-planar geometries has been observed, as well as opposite behaviours for both classical and revival times with respect to the direction of the external field. Our results show that it is possible to modify regeneration times using curvature and electric fields at the same time. This fine control in regeneration times could allow for the study of new phenomena on graphene.
Collapse
Affiliation(s)
| | - Angel Ballesteros
- Physics Department, Universidad de Burgos, 09001 Burgos, Spain; (S.d.-l.-H.-S.); (A.B.)
| | - Nicolás A. Cordero
- Physics Department, Universidad de Burgos, 09001 Burgos, Spain; (S.d.-l.-H.-S.); (A.B.)
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), Unversidad de Burgos, 09001 Burgos, Spain
- Institute Carlos I for Theoretical and Computational Physics (IC1), 18016 Granada, Spain
| |
Collapse
|
2
|
Yang Y, Xu Y. Direct etching of nano/microscale patterns with both few-layer graphene and high-depth graphite structures by the raster STM electric lithography in the ambient conditions. J Microsc 2023; 292:37-46. [PMID: 37681465 DOI: 10.1111/jmi.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The development of raster STM electric lithography has enabled the etching of nano/microscale patterns on both few-layer graphene (FLG) and high-depth graphite structures on the bulk HOPG substrates under ambient conditions. This approach utilises a nanoscale probe tip as a machining tool to directly fabricate conductive sample surfaces without the need for resists or masks. Compared to conventional nano/micro machining methods, the capability of ultraaccurate fabrication of nanoscale patterns using this technique is unmatched. The resulting FLG structures exhibit ultrasmooth flat bottoms and uniformly controlled depths ranging from 0.34 to 3.0 nm (less than 10 layers). This work represents a significant advancement as it demonstrates the perfect etching of FLG structures in designated nano/microscale regions using raster STM electric lithography in the constant current mode, which reaches the limitation of top-down manufacturing techniques. Additionally, raster STM electric lithography in the constant height mode can directly etch high-depth structures (up to ∼100 nm). The geometric shape and number of layers of the etched graphene structures determined by either local anodic oxidation (LAO) or the electric discharge (ED) mechanism. The LAO mechanism results in less debris and smoother edges compared to the ED mechanism, which is caused by the random electrical discharge between the tip and the sample. The well-controlled raster STM electric lithography technique is believed to be a promising and facile approach for constructing nano/microscale graphene-based devices.
Collapse
Affiliation(s)
- Ye Yang
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Yang Xu
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, California
| |
Collapse
|
3
|
Thibado PM, Kumar P, Singh S, Ruiz-Garcia M, Lasanta A, Bonilla LL. Fluctuation-induced current from freestanding graphene. Phys Rev E 2020; 102:042101. [PMID: 33212603 DOI: 10.1103/physreve.102.042101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
At room temperature, micron-sized sheets of freestanding graphene are in constant motion, even in the presence of an applied bias voltage. We quantify the out-of-plane movement by collecting the displacement current using a nearby small-area metal electrode and present an Ito-Langevin model for the motion coupled to a circuit containing diodes. Numerical simulations show that the system reaches thermal equilibrium and the average rates of heat and work provided by stochastic thermodynamics tend quickly to zero. However, there is power dissipated by the load resistor, and its time average is exactly equal to the power supplied by the thermal bath. The exact power formula is similar to Nyquist's noise power formula, except that the rate of change of diode resistance significantly boosts the output power, and the movement of the graphene shifts the power spectrum to lower frequencies. We have calculated the equilibrium average of the power by asymptotic and numerical methods. Excellent agreement is found between experiment and theory.
Collapse
Affiliation(s)
- P M Thibado
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - P Kumar
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Surendra Singh
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - M Ruiz-Garcia
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - A Lasanta
- G. Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics and Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Departamento de Álgebra, Facultad de Educación, Economía y Tecnología de Ceuta, Universidad de Granada, E-51001 Ceuta, Spain
| | - L L Bonilla
- G. Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics and Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Courant Institute for Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
4
|
Zhan H, Guo D, Xie G. Two-dimensional layered materials: from mechanical and coupling properties towards applications in electronics. NANOSCALE 2019; 11:13181-13212. [PMID: 31287486 DOI: 10.1039/c9nr03611c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the increasing interest in nanodevices based on two-dimensional layered materials (2DLMs) after the birth of graphene, the mechanical and coupling properties of these materials, which play an important role in determining the performance and life of nanodevices, have drawn increasingly more attention. In this review, both experimental and simulation methods investigating the mechanical properties and behaviour of 2DLMs have been summarized, which is followed by the discussion of their elastic properties and failure mechanisms. For further understanding and tuning of their mechanical properties and behaviour, the influence factors on the mechanical properties and behaviour have been taken into consideration. In addition, the coupling properties between mechanical properties and other physical properties are summarized to help set up the theoretical blocks for their novel applications. Thus, the understanding of the mechanical and coupling properties paves the way to their applications in flexible electronics and novel electronics, which is demonstrated in the last part. This review is expected to provide in-depth and comprehensive understanding of mechanical and coupling properties of 2DLMs as well as direct guidance for obtaining satisfactory nanodevices from the aspects of material selection, fabrication processes and device design.
Collapse
Affiliation(s)
- Hao Zhan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China.
| | - Dan Guo
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China.
| | - GuoXin Xie
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Huang P, Guo D, Xie G, Li J. Softened Mechanical Properties of Graphene Induced by Electric Field. NANO LETTERS 2017; 17:6280-6286. [PMID: 28880563 DOI: 10.1021/acs.nanolett.7b02965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The understanding on the mechanical properties of graphene under the applications of physical fields is highly relevant to the reliability and lifetime of graphene-based nanodevices. In this work, we demonstrate that the application of electric field could soften the mechanical properties of graphene dramatically on the basis of the conductive AFM nanoindentation method. It has been found that the Young's modulus and fracture strength of graphene nanosheets suspended on the holes almost stay the same initially and then exhibit a sharp drop when the normalized electric field strength increases to be 0.18 ± 0.03 V/nm. The threshold voltage of graphene nanosheets before the onset of fracture under the fixed applied load increases with the thickness. Supported graphene nanosheets can sustain larger electric field under the same applied load than the suspended ones. The excessively regional Joule heating caused by the high electric current under the applied load is responsible for the electromechanical failure of graphene. These findings can provide a beneficial guideline for the electromechanical applications of graphene-based nanodevices.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
- Science and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908, Sichuan, China
| | - Dan Guo
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Jian Li
- Wuhan Research Institute of Materials Protection , Wuhan 430030, Hubei, China
| |
Collapse
|
6
|
Liu X, Wang F, Wu H. Anisotropic growth of buckling-driven wrinkles in graphene monolayer. NANOTECHNOLOGY 2015; 26:065701. [PMID: 25597449 DOI: 10.1088/0957-4484/26/6/065701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We theoretically and numerically investigate the growth of buckling-driven wrinkles in graphene monolayers. It is found that the growth of buckling-driven wrinkles in a graphene monolayer is remarkably chirality- and size-dependent. In small sizes, the flexural response of a graphene sheet cannot be accurately described by the classical Euler regime, and the non-continuum effect leads to zigzag-along-preferred buckling. With the increase of size, the width/length ratio α of the compressed region plays an important role in the growth of buckling-driven wrinkles. When α < 0.5, the oblique buckling happens in armchair-along compression; when 0.5 < α < 1.0, the effect of edge warp leads to zigzag-along-preferred buckling. When 1.0 < α < 3.0, the potential energy density difference due to chiral bending stiffness leads to armchair-along-preferred buckling. When α > 3.0, the non-continuum effect and chiral bending stiffness can both be neglected, and the buckling in a graphene monolayer is isotropic. The chirality-along-preferred transition of compressed buckling in a graphene monolayer leads to an improved fundamental understanding of the dynamics mechanism of graphene-based nanodevices, especially for the nanodevices with high frequency response.
Collapse
Affiliation(s)
- XiaoYi Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | |
Collapse
|
7
|
Osváth Z, Gergely-Fülöp E, Nagy N, Deák A, Nemes-Incze P, Jin X, Hwang C, Biró LP. Controlling the nanoscale rippling of graphene with SiO2 nanoparticles. NANOSCALE 2014; 6:6030-6036. [PMID: 24776641 DOI: 10.1039/c3nr06885d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The electronic properties of graphene can be significantly influenced by mechanical strain. One practical approach to induce strain in graphene is to transfer atomically thin membranes onto pre-patterned substrates with specific corrugations. The possibility of using nanoparticles to impart extrinsic rippling to graphene has not been fully explored yet. Here we study the structure and elastic properties of graphene grown by chemical vapour deposition and transferred onto a continuous layer of SiO2 nanoparticles with diameters of around 25 nm, prepared on a Si substrate by the Langmuir-Blodgett technique. We show that the corrugation of the transferred graphene, and thus the membrane strain, can be modified by annealing at moderate temperatures. The membrane parts bridging the nanoparticles are suspended and can be reversibly lifted by the attractive forces between an atomic force microscope tip and graphene. This allows the dynamic control of the local morphology of graphene nanomembranes.
Collapse
Affiliation(s)
- Z Osváth
- Institute of Technical Physics and Materials Science, MFA, Research Centre for Natural Sciences, HAS, 1525 Budapest, , P.O. Box 49, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|