Murphy BE, Krasnikov SA, Sergeeva NN, Cafolla AA, Preobrajenski AB, Chaika AN, Lübben O, Shvets IV. Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111).
ACS NANO 2014;
8:5190-8. [PMID:
24766567 DOI:
10.1021/nn501240j]
[Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxygen binding and cleavage are important for both molecular recognition and catalysis. Mn-based porphyrins in particular are used as catalysts for the epoxidation of alkenes, and in this study the homolytic cleavage of O2 by a surface-supported monolayer of Mn porphyrins on Ag(111) is demonstrated by scanning tunneling microscopy, X-ray absorption, and X-ray photoemission. As deposited, {5,10,15,20-tetraphenylporphyrinato}Mn(III)Cl (MnClTPP) adopts a saddle conformation with the average plane of its macrocycle parallel to the substrate and the axial Cl ligand pointing upward, away from the substrate. The adsorption of MnClTPP on Ag(111) is accompanied by a reduction of the Mn oxidation state from Mn(III) to Mn(II) due to charge transfer between the substrate and the molecule. Annealing the Mn(II)ClTPP monolayer up to 510 K causes the chlorine ligands to desorb from the porphyrins while leaving the monolayer intact. The Mn(II)TPP is stabilized by the surface acting as an axial ligand for the metal center. Exposure of the Mn(II)TPP/Ag(111) system to molecular oxygen results in the dissociation of O2 and forms pairs of Mn(III)OTPP molecules on the surface. Annealing at 445 K reduces the Mn(III)OTPP complex back to Mn(II)TPP/Ag(111). The activation energies for Cl and O removal were found to be 0.35 ± 0.02 eV and 0.26 ± 0.03 eV, respectively.
Collapse