1
|
Wang Y, Nagai T, Watanabe I, Hagiwara K, Inoue M. Total Synthesis of Euonymine and Euonyminol Octaacetate. J Am Chem Soc 2021; 143:21037-21047. [PMID: 34870420 DOI: 10.1021/jacs.1c11038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Euonymine (1) and euonyminol octaacetate (2) share the core structure of euonyminol (3), the most hydroxylated member of the dihydro-β-agarofuran family. In 2, eight of the nine hydroxy groups of 3 are acetylated, and 1 has six acetyl groups and a 14-membered bislactone comprising a pyridine dicarboxylic acid with two methyl groups. The different acylation patterns provide distinct biological activities: 1 and 2 display anti-HIV and P-glycoprotein inhibitory effects, respectively. The 11 contiguous stereocenters and 9 oxygen functionalities of the ABC-ring system of 1 and 2 represent a formidable challenge, which is further heightened by the macrocyclic structure of 1. Here we disclose an efficient synthetic strategy for enantioselective total synthesis of 1 and 2. Starting from (R)-glycerol acetonide, we constructed the B-ring by an Et3N-accelerated Diels-Alder reaction, the C-ring by intramolecular iodoetherification, and the A-ring by ring-closing olefin metathesis. The 10 stereocenters were installed through a series of substrate-controlled stereoselective C-C and C-O bond formations by exploiting the three-dimensional structures of judiciously designed substrates. These newly developed reaction sequences led to protected euonyminol 5, which served as a common intermediate for assembling 1 and 2. Global deprotection of 5 and subsequent acetylation produced 2. Alternatively, the discriminative protective groups of 5 allowed for site-selective bis-esterification to generate bislactone. Combining [3 + 2]-cycloaddition and reductive desulfurization introduced the last remaining stereocenters of the two methyl groups on the macrocycle. Finally, deprotection and acetylation gave rise to fully synthetic 1 for the first time.
Collapse
Affiliation(s)
- Yinghua Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiya Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Itsuki Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Tomanik M, Xu Z, Guo F, Wang Z, Yang KR, Batista VS, Herzon SB. Development of an Enantioselective Synthesis of (-)-Euonyminol. J Org Chem 2021; 86:17011-17035. [PMID: 34784213 DOI: 10.1021/acs.joc.1c02167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We detail the development of the first enantioselective synthetic route to euonyminol (1), the most heavily oxidized member of the dihydro-β-agarofuran sesquiterpenes and the nucleus of the macrocyclic alkaloids known as the cathedulins. Key steps in the synthetic sequence include a novel, formal oxyalkylation reaction of an allylic alcohol by [3 + 2] cycloaddition; a tandem lactonization-epoxide opening reaction to form the trans-C2-C3 vicinal diol residue; and a late-stage diastereoselective trimethylaluminum-mediated α-ketol rearrangement. We report an improved synthesis of the advanced unsaturated ketone intermediate 64 by means of a 6-endo-dig radical cyclization of the enyne 42. This strategy nearly doubled the yield through the intermediate steps in the synthesis and avoided a problematic inversion of stereochemistry required in the first-generation approach. Computational studies suggest that the mechanism of this transformation proceeds via a direct 6-endo-trig cyclization, although a competing 5-exo-trig cyclization, followed by a rearrangement, is also energetically viable. We also detail the challenges associated with manipulating the oxidation state of late-stage intermediates, which may inform efforts to access other derivatives such as 9-epi-euonyminol or 8-epi-euonyminol. Our successful synthetic strategy provides a foundation to synthesize the more complex cathedulins.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Facheng Guo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zechun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ke R Yang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
3
|
Abstract
We describe an enantioselective total synthesis of the nonahydroxylated sesquiterpenoid euonyminol, the dihydro-β-agarofuran nucleus of the macrocyclic terpenoid alkaloids known as the cathedulins. Key features of the synthetic sequence include a highly diastereoselective intramolecular alkene oxyalkylation to establish the C10 quaternary center, an intramolecular aldol-dehydration to access the tricyclic scaffold of the target, a tandem lactonization-epoxide opening to form the trans-C2-C3 vicinal diol residue, and a late-stage diastereoselective α-ketol rearrangement. The synthesis provides the first synthetic access to enantioenriched euonyminol and establishes a platform to synthesize the cathedulins.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Zhou L, He QJ, Lu LW, Zhao F, Zhang Y, Huang XX, Lin B, Song SJ. Tripterfordins A-O, Dihydro-β-agarofuran Sesquiterpenoids from the Leaves of Tripterygium wilfordii. JOURNAL OF NATURAL PRODUCTS 2019; 82:2696-2706. [PMID: 31556299 DOI: 10.1021/acs.jnatprod.9b00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fifteen new dihydro-β-agarofuran-type sesquiterpenoids, tripterfordins A-O, were obtained from the aqueous EtOH extracts of the leaves of Tripterygium wilfordii. These constituted a class of highly oxygenated tricyclic sesquiterpenoid polyesters with a cinnamoyloxy group at C-1. The assignments of their structures were conducted via extensive analyses of the spectroscopic data and comparison of experimental and calculated ECD data. The absolute configurations of compounds 1, 4, 9, and 10 were established via single-crystal X-ray diffraction data. Additionally, compounds 1, 4, 9, 10, and 13 exhibited pronounced inhibitory effects on nitric oxide production in RAW 264.7 murine macrophages stimulated by lipopolysaccharide with IC50 values ranging from 11.9 to 31.0 μM.
Collapse
Affiliation(s)
| | | | | | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy , Yantai University , Yantai 264005 , People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Dialer CR, Stazzoni S, Drexler DJ, Müller FM, Veth S, Pichler A, Okamura H, Witte G, Hopfner KP, Carell T. A Click-Chemistry Linked 2'3'-cGAMP Analogue. Chemistry 2019; 25:2089-2095. [PMID: 30536650 DOI: 10.1002/chem.201805409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/09/2022]
Abstract
2'3'-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a 3'-5' and a unique 2'-5' linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity. cGAMP analogues with uncharged linkages that feature better cellular penetrability are currently highly desired. Here, the synthesis of a cGAMP analogue with one amide and one triazole linkage is reported. The molecule is best prepared via a first CuI -catalyzed click reaction, which establishes the triazole, while the cyclization is achieved by macrolactamization.
Collapse
Affiliation(s)
- Clemens Reto Dialer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Samuele Stazzoni
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - David Jan Drexler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Felix Moritz Müller
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Simon Veth
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Alexander Pichler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Hidenori Okamura
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Gregor Witte
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
6
|
Fujisawa H, Ishiyama T, Urabe D, Inoue M. Construction of the septahydroxylated ABC-ring system of dihydro-β-agarofurans: application of 6-exo-dig radical cyclization. Chem Commun (Camb) 2017; 53:4073-4076. [PMID: 28345082 DOI: 10.1039/c7cc00507e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic route to the septahydroxylated ABC-ring system of dihydro-β-agarofurans was established. The B-ring was formed by a base-promoted diastereoselective Diels-Alder reaction between 3-hydroxy-2-pyrone and a d-glyceraldehyde-derived dienophile, while the C-ring was cyclized by PhSeCl-mediated etherification. The remaining A-ring was constructed via a 6-exo-dig radical reaction. Selective transformations gave rise to the ABC-ring system 1 with nine contiguous stereocenters. The thus obtained 1 corresponded to the enantiomer of the densely oxygenated core structure of dihydro-β-agarofurans.
Collapse
Affiliation(s)
- Hiroki Fujisawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tomochika Ishiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Perestelo NR, Jiménez IA, Tokuda H, Vázquez JT, Ichiishi E, Bazzocchi IL. Absolute Configuration of Dihydro-β-agarofuran Sesquiterpenes from Maytenus jelskii and Their Potential Antitumor-Promoting Effects. JOURNAL OF NATURAL PRODUCTS 2016; 79:2324-2331. [PMID: 27541714 DOI: 10.1021/acs.jnatprod.6b00469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemoprevention of human cancer appears to be a feasible strategy for cancer control, especially when chemopreventive intervention is involved during early stages of the carcinogenesis process. As a part of our ongoing research program into new chemopreventive agents, herein are reported the isolation, structural elucidation, and biological evaluation of 10 new (1-10) and three known (11-13) sesquiterpenes with a dihydro-β-agarofuran skeleton from the leaves of Maytenus jelskii Zahlbr. Their stereostructures have been elucidated by means of spectroscopic analysis, including 1D and 2D NMR techniques, ECD studies, and biogenetic considerations. The isolated metabolites and eight previously reported sesquiterpenes (14-21) were screened for their antitumor-promoting activity using a short-term in vitro assay for Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Six compounds from this series (4, 5, 11, and 13-15) were found to exhibit higher efficacies than β-carotene, used as reference inhibitor for EBV-EA activation. In particular, promising antitumor activity was observed for compound 5, exhibiting inhibition even at the lowest concentration assayed (10 mol ratio/TPA). Preliminary structure-activity relationship analysis revealed that the acetate, benzoate, and hydroxy groups are the most desirable substituents on the sesquiterpene scaffold for activity in the EBV-EA activation assay.
Collapse
Affiliation(s)
- Nayra R Perestelo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Harukuni Tokuda
- Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan
| | - Jesús T Vázquez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Eiichiro Ichiishi
- Department of Internal Medicine, International University of Health and Welfare Hospital, Nasushiobara , Tochigi 329-2763, Japan
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, and Instituto Canario de Investigación del Cáncer, Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
8
|
Howard KT, Chisholm JD. Preparation and Applications of 4-Methoxybenzyl Esters in Organic Synthesis. ORG PREP PROCED INT 2016; 48:1-36. [PMID: 27546912 DOI: 10.1080/00304948.2016.1127096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kyle T Howard
- Department of Chemistry, 1-014 Center for Science & Technology, Syracuse University, Syracuse, NY 13244, USA
| | - John D Chisholm
- Department of Chemistry, 1-014 Center for Science & Technology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
9
|
Dhambri S, Mohammad S, Van Buu ON, Galvani G, Meyer Y, Lannou MI, Sorin G, Ardisson J. Recent advances in the synthesis of natural multifunctionalized decalins. Nat Prod Rep 2015; 32:841-64. [PMID: 25891138 DOI: 10.1039/c4np00142g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review highlights recent innovative synthetic strategies developed for the stereoselective construction of natural complex decalin systems. It offers an insight into various synthetic targets and approaches and provides information for developments within the area of natural products as well as synthetic methodology.
Collapse
Affiliation(s)
- S Dhambri
- Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Unité CNRS UMR 8638 COMÈTE, 4 avenue de l'observatoire, 75270 PARIS Cedex 06.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kumaran RS, Mehta G. An enantiodivergent protocol from R-(−)-carvone: synthesis of dihydroagarofuran sesquiterpenoid 1-deacetoxy-ent-orbiculin A. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
A versatile, RCM based approach to eudesmane and dihydroagarofuran sesquiterpenoids from (−)-carvone: a formal synthesis of (−)-isocelorbicol. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Urabe D, Todoroki H, Inoue M. Asymmetric Total Synthesis of (−)-4-Hydroxyzinowol, a Highly Oxygenated Dihydro-β-Agarofuran. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.1081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
13
|
Todoroki H, Iwatsu M, Urabe D, Inoue M. Total Synthesis of (−)-4-Hydroxyzinowol. J Org Chem 2014; 79:8835-49. [DOI: 10.1021/jo501666x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hidenori Todoroki
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masafumi Iwatsu
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Andrews KG, Spivey AC. Improving the Accuracy of Computed 13C NMR Shift Predictions by Specific Environment Error Correction: Fragment Referencing. J Org Chem 2013; 78:11302-17. [DOI: 10.1021/jo401833b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith G. Andrews
- Department
of Chemistry, Imperial College, London SW7 2AZ, United Kingdom
| | - Alan C. Spivey
- Department
of Chemistry, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Andrews KG, Frampton CS, Spivey AC. Structural assignment of a bis-cyclopentenyl-β-cyanohydrin formedviaalkene metathesis from either a triene or a tetraene precursor. Acta Crystallogr C 2013; 69:1207-11. [DOI: 10.1107/s010827011302492x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022] Open
Abstract
The identity of the major product of Ru-catalysed alkene metathesis of two polyene substrates has been determined using density functional theory (DFT) NMR prediction, a1H–1H Total Correlated Spectroscopy (TOCSY) NMR experiment and ultimately by single-crystal X-ray crystallography. The substrates were designed as those that would potentially allow expedient access to thetrans-decalin skeleton of the natural product (−)-euonyminol, but the product was found to be a bis-cyclopentenyl-β-cyanohydrin [1-(1-hydroxycyclopent-3-en-1-yl)cyclopent-3-ene-1-carbonitrile, C11H13NO] rather than thetrans-2,3,6,7-dehydrodecalin-β-cyanohydrin.
Collapse
|
16
|
Ishiyama T, Urabe D, Fujisawa H, Inoue M. Concise Synthesis of the Multiply Oxygenated ABC-Ring System of the Dihydro-β-agarofurans. Org Lett 2013; 15:4488-91. [DOI: 10.1021/ol402038b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomochika Ishiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Fujisawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Lester RP, Dunsford JJ, Camp JE. Multifaceted catalysis approach to nitrile activation: direct synthesis of halogenated allyl amides from allylic alcohols. Org Biomol Chem 2013; 11:7472-6. [DOI: 10.1039/c3ob41692e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|