1
|
Chen L, Lu H, Ballout F, El-Rifai W, Chen Z, Gokulan RC, McDonald OG, Peng D. Targeting NEK Kinases in Gastrointestinal Cancers: Insights into Gene Expression, Function, and Inhibitors. Int J Mol Sci 2025; 26:1992. [PMID: 40076620 PMCID: PMC11900214 DOI: 10.3390/ijms26051992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) cancers, which mainly include malignancies of the esophagus, stomach, intestine, pancreas, liver, gallbladder, and bile duct, pose a significant global health burden. Unfortunately, the prognosis for most GI cancers remains poor, particularly in advanced stages. Current treatment options, including targeted and immunotherapies, are less effective compared to those for other cancer types, highlighting an urgent need for novel molecular targets. NEK (NIMA related kinase) kinases are a group of serine/threonine kinases (NEK1-NEK11) that play a role in regulating cell cycle, mitosis, and various physiological processes. Recent studies suggest that several NEK members are overexpressed in human cancers, including gastrointestinal (GI) cancers, which can contribute to tumor progression and drug resistance. Among these, NEK2 stands out for its consistent overexpression in all types of GI cancer. Targeting NEK2 with specific inhibitors has shown promising results in preclinical studies, particularly for gastric and pancreatic cancers. The development and clinical evaluation of NEK2 inhibitors in human cancers have emerged as a promising therapeutic strategy. Specifically, an NEK2 inhibitor, T-1101 tosylate, is currently undergoing clinical trials. This review will focus on the gene expression and functional roles of NEKs in GI cancers, as well as the progress in developing NEK inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Ravindran Caspa Gokulan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
2
|
Kalkan BM, Baykal AT, Cicek E, Acilan C. Comprehensive proteomics analysis reveals novel Nek2-regulated pathways and therapeutic targets in cancer. Biochem Biophys Res Commun 2024; 734:150779. [PMID: 39368370 DOI: 10.1016/j.bbrc.2024.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The mitotic kinase Nek2, often overexpressed in various cancers, plays a pivotal role in key cellular processes like the cell cycle, proliferation, and drug resistance. As a result, targeting Nek2 has become an appealing strategy for cancer therapy. To gain a comprehensive understanding of the cellular changes associated with Nek2 activity modulation, we performed a global proteomics analysis using LC-MS/MS. Through bioinformatics tools, we identified molecular pathways that are differentially regulated in cancer cells with Nek2 overexpression or depletion. Of the 1815 proteins identified, 358 exceeded the 20 % significance threshold. By integrating LC-MS/MS data with cancer patient datasets, we observed a strong correlation between Nek2 expression and the levels of KIF20B and RRM1. Silencing Nek2 led to a significant reduction in KIF20B and RRM1 protein levels, and potential phosphorylation sites for these proteins by Nek2 were identified. In summary, our data suggests that KIF20B and RRM1 are promising therapeutic targets, either independently or alongside Nek2 inhibitors, to improve clinical outcomes. Further analyses are necessary to fully understand Nek2's interactions with these proteins and their clinical relevance.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey; Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Hellmuth S, Stemmann O. Requirement of Nek2a and cyclin A2 for Wapl-dependent removal of cohesin from prophase chromatin. EMBO J 2024; 43:5237-5259. [PMID: 39271794 PMCID: PMC11535040 DOI: 10.1038/s44318-024-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin. However, Sgo1-PP2A relocates to inner kinetochores well before sister chromatids are separated by separase, leaving pericentromeric regions unprotected. Why deprotected cohesin is not removed by Wapl remains enigmatic. By reconstituting Wapl-dependent cohesin removal from chromatin in vitro, we discovered a requirement for Nek2a and Cdk1/2-cyclin A2. These kinases phosphorylate cohesin-bound Pds5b, thereby converting it from a sororin- to a Wapl-interactor. Replacement of endogenous Pds5b by a phosphorylation mimetic variant causes premature sister chromatid separation (PCS). Conversely, phosphorylation-resistant Pds5b impairs chromosome arm separation in prometaphase-arrested cells and suppresses PCS in the absence of Sgo1. Early mitotic degradation of Nek2a and cyclin A2 may therefore explain why only separase, but not Wapl, can trigger anaphase.
Collapse
Affiliation(s)
- Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
4
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Oyedele AQK, Ogunlana AT, Boyenle ID, Adeyemi AO, Rita TO, Adelusi TI, Abdul-Hammed M, Elegbeleye OE, Odunitan TT. Docking covalent targets for drug discovery: stimulating the computer-aided drug design community of possible pitfalls and erroneous practices. Mol Divers 2023; 27:1879-1903. [PMID: 36057867 PMCID: PMC9441019 DOI: 10.1007/s11030-022-10523-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Abstract
The continuous approval of covalent drugs in recent years for the treatment of diseases has led to an increased search for covalent agents by medicinal chemists and computational scientists worldwide. In the computational parlance, molecular docking which is a popular tool to investigate the interaction of a ligand and a protein target, does not account for the formation of covalent bond, and the increasing application of these conventional programs to covalent targets in early drug discovery practice is a matter of utmost concern. Thus, in this comprehensive review, we sought to educate the docking community about the realization of covalent docking and the existence of suitable programs to make their future virtual-screening events on covalent targets worthwhile and scientifically rational. More interestingly, we went beyond the classical description of the functionality of covalent-docking programs down to selecting the 'best' program to consult with during a virtual-screening campaign based on receptor class and covalent warhead chemistry. In addition, we made a highlight on how covalent docking could be achieved using random conventional docking software. And lastly, we raised an alert on the growing erroneous molecular docking practices with covalent targets. Our aim is to guide scientists in the rational docking pursuit when dealing with covalent targets, as this will reduce false-positive results and also increase the reliability of their work for translational research.
Collapse
Affiliation(s)
- Abdul-Quddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Chemistry, University of New Haven, West Haven, CT, USA
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Ibrahim Damilare Boyenle
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
- Department of Chemistry and Biochemsitry, University of Maryland, Maryland, USA.
- College of Health Sciences, Crescent University, Abeokuta, Nigeria.
| | | | - Temionu Oluwakemi Rita
- Department of Medical Laboratory Technology, Lagos State College of Health, Lagos, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Misbaudeen Abdul-Hammed
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Tope Tunji Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Wen W, Cao H, Xu Y, Ren Y, Rao L, Shao X, Chen H, Wu L, Liu J, Su C, Peng C, Huang Y, Wan J. N-Acylamino Saccharin as an Emerging Cysteine-Directed Covalent Warhead and Its Application in the Identification of Novel FBPase Inhibitors toward Glucose Reduction. J Med Chem 2022; 65:9126-9143. [PMID: 35786925 DOI: 10.1021/acs.jmedchem.2c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With a resurgence of covalent drugs, there is an urgent need for the identification of new moieties capable of cysteine bond formation. Herein, we report on the N-acylamino saccharin moieties capable of novel covalent reactions with cysteine. Their utility as alternative electrophilic warheads was demonstrated through the covalent modification of fructose-1,6-bisphosphatase (FBPase), a promising target associated with cancer and type 2 diabetes. The cocrystal structure of title compound W8 bound with FBPase unexpectedly revealed that the N-acylamino saccharin moiety worked as an electrophile warhead that covalently modified the noncatalytic C128 site in FBPase while releasing saccharin, suggesting a previously undiscovered covalent reaction mechanism of saccharin derivatives with cysteine. Treatment of title compound W8 displayed potent inhibition of glucose production in vitro and in vivo. This newly discovered reactive warhead supplements the current repertoire of cysteine covalent modifiers while avoiding some of the limitations generally associated with established moieties.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixiang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xubo Shao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lixia Wu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
7
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
8
|
Archana Vasuki K, Jemmy Christy H, Chandramohan V, Anand DA. Study of mangal based naphthoquinone derivatives anticancer potential towards chemo-resistance related Never in mitosis gene A-related kinase 2-Insilico approach. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1948545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- K. Archana Vasuki
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai-, India
| | - H. Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai-, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Daniel Alex Anand
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai-, India
| |
Collapse
|
9
|
Zhang X, Huang X, Xu J, Li E, Lao M, Tang T, Zhang G, Guo C, Zhang X, Chen W, Yadav DK, Bai X, Liang T. NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat Commun 2021; 12:4536. [PMID: 34315872 PMCID: PMC8316469 DOI: 10.1038/s41467-021-24769-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023] Open
Abstract
Despite the substantial impact of post-translational modifications on programmed cell death 1 ligand 1 (PD-L1), its importance in therapeutic resistance in pancreatic cancer remains poorly defined. Here, we demonstrate that never in mitosis gene A-related kinase 2 (NEK2) phosphorylates PD-L1 to maintain its stability, causing PD-L1-targeted pancreatic cancer immunotherapy to have poor efficacy. We identify NEK2 as a prognostic factor in immunologically "hot" pancreatic cancer, involved in the onset and development of pancreatic tumors in an immune-dependent manner. NEK2 deficiency results in the suppression of PD-L1 expression and enhancement of lymphocyte infiltration. A NEK binding motif (F/LXXS/T) is identified in the glycosylation-rich region of PD-L1. NEK2 interacts with PD-L1, phosphorylating the T194/T210 residues and preventing ubiquitin-proteasome pathway-mediated degradation of PD-L1 in ER lumen. NEK2 inhibition thereby sensitizes PD-L1 blockade, synergically enhancing the anti-pancreatic cancer immune response. Together, the present study proposes a promising strategy for improving the effectiveness of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
The Greatwall kinase safeguards the genome integrity by affecting the kinome activity in mitosis. Oncogene 2020; 39:6816-6840. [PMID: 32978522 PMCID: PMC7605441 DOI: 10.1038/s41388-020-01470-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Progression through mitosis is balanced by the timely regulation of phosphorylation and dephosphorylation events ensuring the correct segregation of chromosomes before cytokinesis. This balance is regulated by the opposing actions of CDK1 and PP2A, as well as the Greatwall kinase/MASTL. MASTL is commonly overexpressed in cancer, which makes it a potential therapeutic anticancer target. Loss of Mastl induces multiple chromosomal errors that lead to the accumulation of micronuclei and multilobulated cells in mitosis. Our analyses revealed that loss of Mastl leads to chromosome breaks and abnormalities impairing correct segregation. Phospho-proteomic data for Mastl knockout cells revealed alterations in proteins implicated in multiple processes during mitosis including double-strand DNA damage repair. In silico prediction of the kinases with affected activity unveiled NEK2 to be regulated in the absence of Mastl. We uncovered that, RAD51AP1, involved in regulation of homologous recombination, is phosphorylated by NEK2 and CDK1 but also efficiently dephosphorylated by PP2A/B55. Our results suggest that MastlKO disturbs the equilibrium of the mitotic phosphoproteome that leads to the disruption of DNA damage repair and triggers an accumulation of chromosome breaks even in noncancerous cells.
Collapse
|
11
|
McAulay K, Hoyt EA, Thomas M, Schimpl M, Bodnarchuk MS, Lewis HJ, Barratt D, Bhavsar D, Robinson DM, Deery MJ, Ogg DJ, Bernardes GJL, Ward RA, Waring MJ, Kettle JG. Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. J Am Chem Soc 2020; 142:10358-10372. [PMID: 32412754 DOI: 10.1021/jacs.9b13391] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With a resurgence in interest in covalent drugs, there is a need to identify new moieties capable of cysteine bond formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, the use of a novel heterocycle as a cysteine reactive warhead is employed to target Cys788 in c-KIT, where acrylamide has previously failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for cysteine covalent modification while avoiding some of the limitations generally associated with established moieties.
Collapse
Affiliation(s)
| | - Emily A Hoyt
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | | - Marianne Schimpl
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Derek Barratt
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Deepa Bhavsar
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Derek J Ogg
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.,Instituto de Medicina Molecular, Faculdade de Medicina de Universidad de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Michael J Waring
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K
| | | |
Collapse
|
12
|
Matheson CJ, Coxon CR, Bayliss R, Boxall K, Carbain B, Fry AM, Hardcastle IR, Harnor SJ, Mas-Droux C, Newell DR, Richards MW, Sivaprakasam M, Turner D, Griffin RJ, Golding BT, Cano C. 2-Arylamino-6-ethynylpurines are cysteine-targeting irreversible inhibitors of Nek2 kinase. RSC Med Chem 2020; 11:707-731. [PMID: 33479670 PMCID: PMC7649933 DOI: 10.1039/d0md00074d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/02/2020] [Indexed: 12/30/2022] Open
Abstract
Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 μM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 μM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 μM (Nek2); GI50 (SKBR3) 2.2 μM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 μM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 μM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.
Collapse
Affiliation(s)
- Christopher J Matheson
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Christopher R Coxon
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Richard Bayliss
- School of Molecular and Cellular Biology , The Astbury Centre for Structural Molecular Biology , University of Leeds , UK
- Section of Structural Biology , The Institute of Cancer Research , Sutton , UK
| | - Kathy Boxall
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , Sutton , UK
| | - Benoit Carbain
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Andrew M Fry
- School of Molecular and Cellular Biology , The Astbury Centre for Structural Molecular Biology , University of Leeds , UK
| | - Ian R Hardcastle
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Corine Mas-Droux
- Section of Structural Biology , The Institute of Cancer Research , Sutton , UK
| | - David R Newell
- Cancer Research UK Newcastle Drug Discovery Unit , Translational and Clinical Research Institute , Newcastle University Centre for Cancer , Faculty of Medical Sciences , Newcastle University , Newcastle upon Tyne , UK
| | - Mark W Richards
- School of Molecular and Cellular Biology , The Astbury Centre for Structural Molecular Biology , University of Leeds , UK
| | - Mangaleswaran Sivaprakasam
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - David Turner
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Roger J Griffin
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Bernard T Golding
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| |
Collapse
|
13
|
Martin JS, MacKenzie CJ, Fletcher D, Gilbert IH. Characterising covalent warhead reactivity. Bioorg Med Chem 2019; 27:2066-2074. [PMID: 30975501 PMCID: PMC6538824 DOI: 10.1016/j.bmc.2019.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023]
Abstract
Many drugs currently used are covalent inhibitors and irreversibly inhibit their targets. Most of these were discovered through serendipity. Covalent inhibitions can have many advantages from a pharmacokinetic perspective. However, until recently most organisations have shied away from covalent compound design due to fears of non-specific inhibition of off-target proteins leading to toxicity risks. However, there has been a renewed interest in covalent modifiers as potential drugs, as it possible to get highly selective compounds. It is therefore important to know how reactive a warhead is and to be able to select the least reactive warhead possible to avoid toxicity. A robust NMR based assay was developed and used to measure the reactivity of a variety of covalent warheads against serine and cysteine - the two most common targets for covalent drugs. A selection of these warheads also had their reactivity measured against threonine, tyrosine, lysine, histidine and arginine to better understand our ability to target non-traditional residues. The reactivity was also measured at various pHs to assess what effect the environment in the active site would have on these reactions. The reactivity of a covalent modifier was found to be very dependent on the amino acid residue.
Collapse
Affiliation(s)
- James S Martin
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Claire J MacKenzie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Daniel Fletcher
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
14
|
D'Ascenzio M, Pugh KM, Konietzny R, Berridge G, Tallant C, Hashem S, Monteiro O, Thomas JR, Schirle M, Knapp S, Marsden B, Fedorov O, Bountra C, Kessler BM, Brennan PE. An Activity-Based Probe Targeting Non-Catalytic, Highly Conserved Amino Acid Residues within Bromodomains. Angew Chem Int Ed Engl 2019; 58:1007-1012. [PMID: 30589164 PMCID: PMC6492141 DOI: 10.1002/anie.201807825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/20/2018] [Indexed: 12/27/2022]
Abstract
Bromodomain-containing proteins are epigenetic modulators involved in a wide range of cellular processes, from recruitment of transcription factors to pathological disruption of gene regulation and cancer development. Since the druggability of these acetyl-lysine reader domains was established, efforts were made to develop potent and selective inhibitors across the entire family. Here we report the development of a small molecule-based approach to covalently modify recombinant and endogenous bromodomain-containing proteins by targeting a conserved lysine and a tyrosine residue in the variable ZA or BC loops. Moreover, the addition of a reporter tag allowed in-gel visualization and pull-down of the desired bromodomains.
Collapse
Affiliation(s)
- Melissa D'Ascenzio
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| | - Kathryn M. Pugh
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| | | | - Georgina Berridge
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| | - Cynthia Tallant
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| | - Shaima Hashem
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
| | - Octovia Monteiro
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| | - Jason R. Thomas
- Novartis Institute for BioMedical Research (NIBR)180 Massachusetts AveCambridgeMA02139USA
| | - Markus Schirle
- Novartis Institute for BioMedical Research (NIBR)180 Massachusetts AveCambridgeMA02139USA
| | - Stefan Knapp
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life SciencesJohann Wolfgang Goethe-University60438Frankfurt am MainGermany
| | - Brian Marsden
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
| | - Oleg Fedorov
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| | - Chas Bountra
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
| | | | - Paul E. Brennan
- Structural Genomic Consortium (SGC)University of OxfordOxfordOX3 7DQUK
- Target Discovery Institute (TDI)University of OxfordOxfordOX3 7FZUK
| |
Collapse
|
15
|
D'Ascenzio M, Pugh KM, Konietzny R, Berridge G, Tallant C, Hashem S, Monteiro O, Thomas JR, Schirle M, Knapp S, Marsden B, Fedorov O, Bountra C, Kessler BM, Brennan PE. An Activity‐Based Probe Targeting Non‐Catalytic, Highly Conserved Amino Acid Residues within Bromodomains. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa D'Ascenzio
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Kathryn M. Pugh
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Rebecca Konietzny
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Georgina Berridge
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Cynthia Tallant
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Shaima Hashem
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
| | - Octovia Monteiro
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Jason R. Thomas
- Novartis Institute for BioMedical Research (NIBR) 180 Massachusetts Ave Cambridge MA 02139 USA
| | - Markus Schirle
- Novartis Institute for BioMedical Research (NIBR) 180 Massachusetts Ave Cambridge MA 02139 USA
| | - Stefan Knapp
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life SciencesJohann Wolfgang Goethe-University 60438 Frankfurt am Main Germany
| | - Brian Marsden
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
| | - Oleg Fedorov
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| | - Chas Bountra
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
| | | | - Paul E. Brennan
- Structural Genomic Consortium (SGC)University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute (TDI)University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
16
|
Spiteri L, Baisch U, Vella-Zarb L. Correlations and statistical analysis of solvent molecule hydrogen bonding – a case study of dimethyl sulfoxide (DMSO). CrystEngComm 2018. [DOI: 10.1039/c7ce02206a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A statistical study of the correlation between predicted solubility of DMSO solvates and hydrogen bonds between solvent and host molecules.
Collapse
Affiliation(s)
- L. Spiteri
- Department of Chemistry
- University of Malta
- Msida
- Malta
| | - U. Baisch
- Department of Chemistry
- University of Malta
- Msida
- Malta
- School of Chemistry
| | - L. Vella-Zarb
- Department of Chemistry
- University of Malta
- Msida
- Malta
- School of Chemistry
| |
Collapse
|
17
|
Abstract
Never in Mitosis (NIMA) Related Kinase 2 (NEK2) plays a key role in regulating mitotic processes, including centrosome duplication and separation, microtubule stabilization, kinetochore attachment and spindle assembly checkpoint. NEK2 is aberrantly overexpressed in a wide variety of human cancers and has been implicated in various aspects of malignant transformation, including tumorigenesis, drug resistance and tumor progression. The close relationship between NEK2 and cancer has made it an attractive target for anticancer therapeutic development; however, the mechanisms of how NEK2 coordinates altered signaling to malignant transformation remains unclear. In this paper, we discuss the functional roles of NEK2 in cancer development; highlight some of the significant NEK2 signaling in cancer, and summarize recent advances in the development of NEK2 inhibitors.
Collapse
Affiliation(s)
- Yanfen Fang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University , Shanghai , China
| | - Xiongwen Zhang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University , Shanghai , China
| |
Collapse
|
18
|
A new tool for the chemical genetic investigation of the Plasmodium falciparum Pfnek-2 NIMA-related kinase. Malar J 2016; 15:535. [PMID: 27821169 PMCID: PMC5100313 DOI: 10.1186/s12936-016-1580-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. Results Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. Conclusions Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2.
Collapse
|
19
|
Role of NEK2A in human cancer and its therapeutic potentials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:862461. [PMID: 25705694 PMCID: PMC4330945 DOI: 10.1155/2015/862461] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Chromosome instability (CIN) has been identified as a common feature of most human cancers. A number of centrosomal kinases are thought to cause CIN in cancer cells. Part of those centrosomal kinases exhibit elevated expression in a wide variety of tumours and cancer cell lines. Additionally, critical roles in many aspects of cancer cell growth, proliferation, metastasis, and drug resistance have been assigned to some of these centrosomal kinases, such as polo-like kinase 1 (PLk1) and Aurora-A kinase. Recent studies from our group and others revealed that a centrosomal kinase, Never in Mitosis (NIMA) Related Kinase 2A (NEK2A), is frequently upregulated in multiple types of human cancers. Uncontrolled activity of NEK2A activates several oncogenic pathways and ABC transporters, thereby leading to CIN, cancer cell proliferation, metastasis, and enhanced drug resistance. In this paper, we highlight recent findings on the aberrant expression and functional significance of NEK2A in human cancers and emphasize their significance for therapeutic potentials.
Collapse
|