1
|
Griffiths OM, Esteves HA, Emmet DC, Ley SV. Photoredox-Catalyzed Preparation of Sulfones Using Bis-Piperidine Sulfur Dioxide - An Underutilized Reagent for SO 2 Transfer. Chemistry 2024; 30:e202303976. [PMID: 38116896 DOI: 10.1002/chem.202303976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Sulfonyl groups are widely observed in biologically relevant molecules and consequently, SO2 capture is an increasingly attractive method to prepare these sulfonyl-containing compounds given the range of SO2 -surrogates now available as alternatives to using the neat gas. This, along with the advent of photoredox catalysis, has enabled mild radical capture of SO2 to emerge as an effective route to sulfonyl compounds. Here we report a photoredox-catalyzed cross-electrophile sulfonylation of aryl and alkyl bromides making use of a previously under-used amine-SO2 surrogate; bis(piperidine) sulfur dioxide (PIPSO). A broad selection of alkyl and aryl bromides were photocatalytically converted to their corresponding sulfinates and then trapped with various electrophiles in a one-pot multistep procedure to prepare sulfones and sulfonamides.
Collapse
Affiliation(s)
- Oliver M Griffiths
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Darcy C Emmet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Steven V Ley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
2
|
Lehner M, Rieth S, Höllmüller E, Spliesgar D, Mertes B, Stengel F, Marx A. Profiling of the ADP-Ribosylome in Living Cells. Angew Chem Int Ed Engl 2022; 61:e202200977. [PMID: 35188710 PMCID: PMC9315028 DOI: 10.1002/anie.202200977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modification (PTM) with ADP-ribose and poly(ADP-ribose) using nicotinamide adenine dinucleotide (NAD+ ) as substrate is involved in the regulation of numerous cellular pathways in eukaryotes, notably the response to DNA damage caused by cellular stress. Nevertheless, due to intrinsic properties of NAD+ e.g., high polarity and associated poor cell passage, these PTMs are difficult to characterize in cells. Here, two new NAD+ derivatives are presented, which carry either a fluorophore or an affinity tag and, in combination with developed methods for mild cell delivery, allow studies in living human cells. We show that this approach allows not only the imaging of ADP-ribosylation in living cells but also the proteome-wide analysis of cellular adaptation by protein ADP-ribosylation as a consequence of environmental changes such as H2 O2 -induced oxidative stress or the effect of the approved anti-cancer drug olaparib. Our results therefore pave the way for further functional and clinical studies of the ADP-ribosylated proteome in living cells in health and disease.
Collapse
Affiliation(s)
- Maike Lehner
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Sonja Rieth
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Eva Höllmüller
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Daniel Spliesgar
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Bastian Mertes
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Florian Stengel
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
3
|
Lehner M, Rieth S, Höllmüller E, Spliesgar D, Mertes B, Stengel F, Marx A. Profiling of the ADP‐Ribosylome in Living Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maike Lehner
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Sonja Rieth
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Daniel Spliesgar
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Bastian Mertes
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
4
|
Brewster RC, Hulme AN. Halomethyl-Triazoles for Rapid, Site-Selective Protein Modification. Molecules 2021; 26:molecules26185461. [PMID: 34576931 PMCID: PMC8471731 DOI: 10.3390/molecules26185461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications (PTMs) are used by organisms to control protein structure and function after protein translation, but their study is complicated and their roles are not often well understood as PTMs are difficult to introduce onto proteins selectively. Designing reagents that are both good mimics of PTMs, but also only modify select amino acid residues in proteins is challenging. Frequently, both a chemical warhead and linker are used, creating a product that is a misrepresentation of the natural modification. We have previously shown that biotin-chloromethyl-triazole is an effective reagent for cysteine modification to give S-Lys derivatives where the triazole is a good mimic of natural lysine acylation. Here, we demonstrate both how the reactivity of the alkylating reagents can be increased and how the range of triazole PTM mimics can be expanded. These new iodomethyl-triazole reagents are able to modify a cysteine residue on a histone protein with excellent selectivity in 30 min to give PTM mimics of acylated lysine side-chains. Studies on the more complicated, folded protein SCP-2L showed promising reactivity, but also suggested the halomethyl-triazoles are potent alkylators of methionine residues.
Collapse
|
5
|
Saiyasombat W, Kiatisevi S. Bis-BODIPY linked-triazole based on catechol core for selective dual detection of Ag + and Hg 2. RSC Adv 2021; 11:3703-3712. [PMID: 35424275 PMCID: PMC8694132 DOI: 10.1039/d0ra09686e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/10/2021] [Indexed: 11/25/2022] Open
Abstract
Herein, we introduced a new chemosensor, bis-BODIPY linked-triazole based on catechol (BODIPY-OO) prepared by bridging two units of BODIPY fluorophore/triazole binding group with a catechol unit. A solution of this compound displayed 4- and 2-fold enhancements in fluorescence intensity after adding a mole equivalent amount of Ag+ and Hg2+ ions in methanol media, respectively. 1H NMR titrations of BODIPY-OO with Ag+ and Hg2+ suggested that the triazole was involved in the recognition process. BODIPY-OO showed high sensitivity toward Ag+ and Hg2+ over other metal ions with detection limits of 0.45 μM and 1 μM, respectively. It can also distinguish Hg2+ from Ag+ by addition of an EDTA. This compound can therefore be employed as practical fluorescent probe for monitoring the presence of Ag+ and Hg2+ ions. BODIPY–triazole–catechol combination serves as a “turn-on” fluorescent probe for dual detection and differentiation of Hg2+ and Ag+ ions.![]()
Collapse
Affiliation(s)
- Worakrit Saiyasombat
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Rd, Rajthevi Bangkok 10400 Thailand +66-2-354-7151 +66-2-201-5150
| | - Supavadee Kiatisevi
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Rd, Rajthevi Bangkok 10400 Thailand +66-2-354-7151 +66-2-201-5150.,Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University Salaya Putthamonthon Nakhon Pathom 73170 Thailand
| |
Collapse
|
6
|
Huynh V, Wylie RG. Competitive Affinity Release for Long-Term Delivery of Antibodies from Hydrogels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main St. W. ABB-261A Hamilton Ontario L8S 4M1 Canada
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main St. W. ABB-261A Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
7
|
Huynh V, Wylie RG. Competitive Affinity Release for Long-Term Delivery of Antibodies from Hydrogels. Angew Chem Int Ed Engl 2018; 57:3406-3410. [DOI: 10.1002/anie.201713428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main St. W. ABB-261A Hamilton Ontario L8S 4M1 Canada
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology; McMaster University; 1280 Main St. W. ABB-261A Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
8
|
Biotin conjugated organic molecules and proteins for cancer therapy: A review. Eur J Med Chem 2018; 145:206-223. [PMID: 29324341 DOI: 10.1016/j.ejmech.2018.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023]
Abstract
The main transporter for biotin is sodium dependent multivitamin transporter (SMVT), which is overexpressed in various aggressive cancer cell lines such as ovarian (OV 2008, ID8), leukemia (L1210FR), mastocytoma (P815), colon (Colo-26), breast (4T1, JC, MMT06056), renal (RENCA, RD0995), and lung (M109) cancer cell lines. Furthermore, its overexpression was found higher to that of folate receptor. Therefore, biotin demand in the rapidly growing tumors is higher than normal tissues. Several biotin conjugated organic molecules has been reported here for selective delivery of the drug in cancer cell. Biotin conjugated molecules are showing higher fold of cytotoxicity in biotin positive cancer cell lines than the normal cell. Nanoparticles and polymer surface modified drugs and biotin mediated cancer theranostic strategy was highlighted in this review. The cytotoxicity and selectivity of the drug in cancer cells has enhanced after biotin conjugation.
Collapse
|
9
|
Sauvageot E, Elie M, Gaillard S, Daniellou R, Fechter P, Schalk IJ, Gasser V, Renaud JL, Mislin GLA. Antipseudomonal activity enhancement of luminescent iridium(iii) dipyridylamine complexes under visible blue light. Metallomics 2017; 9:1820-1827. [PMID: 29164204 DOI: 10.1039/c7mt00262a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclometallated iridium(iii) dipyridylamine complexes present antibacterial activity against P. aeruginosa, a highly resistant pathogenic bacterium. This activity is increased when the complex is conjugated to biotin, a bacterial nutrient, and a MIC of 4 μM (4 μg mL-1) has been observed. The irradiation of P. aeruginosa cultures with blue LED light potentiates the anti-bacterial activities of these iridium(iii) complexes when they are conjugated to a glycoside.
Collapse
Affiliation(s)
- E Sauvageot
- Normandy Université, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France.
| | - M Elie
- Normandy Université, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France.
| | - S Gaillard
- Normandy Université, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France.
| | - R Daniellou
- Institut de Chimie Organique et Analytique (ICOA)-UMR CNRS 7311-Université d'Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France.
| | - P Fechter
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 67400 Illkirch-Graffenstaden, France. and Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - I J Schalk
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 67400 Illkirch-Graffenstaden, France. and Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - V Gasser
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 67400 Illkirch-Graffenstaden, France. and Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - J-L Renaud
- Normandy Université, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France.
| | - G L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 67400 Illkirch-Graffenstaden, France. and Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
10
|
Wen J, Zhou S, Yu Z, Chen J, Yang G, Tang J. Decomposable quantum-dots/DNA nanosphere for rapid and ultrasensitive detection of extracellular respiring bacteria. Biosens Bioelectron 2017; 100:469-474. [PMID: 28963964 DOI: 10.1016/j.bios.2017.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/17/2023]
Abstract
Extracellular respiring bacteria (ERB) are a group of bacteria capable of transferring electrons to extracellular acceptors and have important application in environmental remediation. In this study, a decomposable quantum-dots (QDs)/DNA nanosphere probe was developed for rapid and ultrasensitive detection of ERB. The QDs/DNA nanosphere was self-assembled from QDs-streptavidin conjugate (QDs-SA) and Y-shaped DNA nanostructure that is constructed based on toehold-mediated strand displacement. It can release numerous fluorescent QDs-SA in immunomagnetic separation (IMS)-based immunoassay via simple biotin displacement, which remarkably amplifies the signal of antigen-antibody recognizing event. This QDs/DNA-nanosphere-based IMS-fluorescent immunoassay is ultrasensitive for model ERB Shewanella oneidensis, showing a wide detection range between 1.0 cfu/mL and 1.0 × 108 cfu/mL with a low detection limit of 1.37 cfu/mL. Moreover, the proposed IMS-fluorescent immunoassay exhibits high specificity, acceptable reproducibility and stability. Furthermore, the proposed method shows acceptable recovery (92.4-101.4%) for detection of S. oneidensis spiked in river water samples. The proposed IMS-fluorescent immunoassay advances an intelligent strategy for rapid and ultrasensitive quantitation of low-abundance analyte and thus holds promising potential in food, medical and environmental applications.
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Jia Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| |
Collapse
|
11
|
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22:1572-1581. [PMID: 28676407 DOI: 10.1016/j.drudis.2017.05.014] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 10/25/2022]
Abstract
1,2,3-Triazole is a well-known scaffold that has a widespread occurrence in different compounds characterized by several bioactivities, such as antimicrobial, antiviral, and antitumor effects. Moreover, the structural features of 1,2,3-triazole enable it to mimic different functional groups, justifying its wide use as a bioisostere for the synthesis of new active molecules. Here, we provide an overview of the 1,2,3-triazole ring as a bioisostere for the design of drug analogs, highlighting relevant recent examples.
Collapse
Affiliation(s)
- Elisa Bonandi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Gaia Fumagalli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Dario Perdicchia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Giulio Rastelli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
12
|
Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I). Molecules 2017; 22:molecules22050802. [PMID: 28505112 PMCID: PMC6154328 DOI: 10.3390/molecules22050802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors for the detection of ligand-bound copper(I).
Collapse
|
13
|
Yan L, Shen L, Zhou H, Wu C, Zhao Y, Wang L, Fang X, Zhang G, Xu J, Yang W. Combination of the fluorescent conjugated polymer and 1, 4, 7, 10- tetraazacyclododecane-1, 4, 7-triacetic acid gadolinium chelate as an agent for dual-modal imaging. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Prakash S, Hazari PP, Meena VK, Jaswal A, Khurana H, Kukreti S, Mishra AK. Biotinidase Resistant 68Gallium-Radioligand Based on Biotin/Avidin Interaction for Pretargeting: Synthesis and Preclinical Evaluation. Bioconjug Chem 2016; 27:2780-2790. [PMID: 27723977 DOI: 10.1021/acs.bioconjchem.6b00576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new macrocyclic system 2,2'-(12-amino-11,13-dioxo-1,4,7,10-tetraazacyclotridecane-4,7-diyl)diacetic acid (ATRIDAT) was designed for coordinating metals in +2 and +3 oxidation states particularly 68Ga(III), for PET imaging. ATRIDAT was conjugated to d-biotin for pretargeting via biotin-avidin interaction. This model provides high tumor targeting efficiency and stability to biotinidase activity leading to modest signal amplification at the tumor site. Cyclization of triethylenetetramine with protected diethylamino malonate resulted in the formation of 13 membered diamide ring. d-Biotin was then anchored on the pendant amine rendering α-methyne carbon to the biotinamide bond which blocks the biotinidase enzyme activity. Biotinidase stability assay showed remarkable stability toward the action of biotinidase with ∼95% remaining intact after treatment following 4 h. Binding affinity experiments such as HABA assay, competitive displacement studies with d-biotin and CD showed high binding affinity of the molecule with avidin in nanomolar range. Biotin conjugate was successfully radiolabeled with 68Ga(III) with radiolabeling efficiency of ∼70% and then purified to get 99.9% radiochemical yield. IC50 of the compound was found to be 2.36 mM in HEK cell line and 0.82 mM in A549 as assessed in MTT assay. In biodistribution studies, the major route of excretion was found to be renal. Significant uptake of 4.15 ± 0.35% was observed in tumor in the avidin pretreated mouse at 1 h. μPET images also showed a high tumor to muscle ratio of 26.8 and tumor to kidney ratio of 1.74 at 1 h post-injection after avidin treatment.
Collapse
Affiliation(s)
- Surbhi Prakash
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India.,Department of Chemistry, University of Delhi , Delhi-110007, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Virendra Kumar Meena
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Ambika Jaswal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Harleen Khurana
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Shrikant Kukreti
- Department of Chemistry, University of Delhi , Delhi-110007, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| |
Collapse
|
15
|
Brewster RC, Gavins GC, Günthardt B, Farr S, Webb KM, Voigt P, Hulme AN. Chloromethyl-triazole: a new motif for site-selective pseudo-acylation of proteins. Chem Commun (Camb) 2016; 52:12230-12232. [PMID: 27722332 PMCID: PMC5656099 DOI: 10.1039/c6cc06801d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022]
Abstract
Rapid, site-selective modification of cysteine residues with chloromethyl-triazole derivatives generates pseudo-acyl sLys motifs, mimicking important post-translational modifications. Near-native biotinylation of peptide and protein substrates is shown to be site-selective and modified histone H4 retains functional activity.
Collapse
Affiliation(s)
- Richard C Brewster
- EaSTCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Georgina C Gavins
- EaSTCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Barbara Günthardt
- EaSTCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Sarah Farr
- EaSTCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Kimberly M Webb
- The Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Philipp Voigt
- The Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Alison N Hulme
- EaSTCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
16
|
Hapuarachchige S, Artemov D. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging. Top Magn Reson Imaging 2016; 25:205-213. [PMID: 27748712 PMCID: PMC5082715 DOI: 10.1097/rmr.0000000000000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|