1
|
Quazi MZ, Choi JH, Kim M, Park N. DNA and Nanomaterials: A Functional Combination for DNA Sensing. ACS APPLIED BIO MATERIALS 2024; 7:778-786. [PMID: 38270150 DOI: 10.1021/acsabm.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Recent decades have experienced tough situations due to the lack of reliable diagnostic facilities. The most recent cases occurred during the pandemic, where researchers observed the lack of diagnostic facilities with precision. Microorganisms and viral disease's ability to escape diagnosis has been a global challenge. DNA always has been a unique moiety with a strong and precise base-paired structure. DNA in human and foreign particles makes identification possible through base pairing. Since then, researchers have focused heavily on designing diagnostic assays targeting DNA in particular. Moreover, DNA nanotechnology has contributed vastly to designing composite nanomaterials by combining DNA/nucleic acids with functional nanomaterials and inorganic nanoparticles exploiting their physicochemical properties. These nanomaterials often exhibit unique or enhanced properties due to the synergistic activity of the many components. The capabilities of DNA and additional nanomaterials have shown the combination of robust and advanced tailoring of biosensors. Preceding findings state that the conventional strategies have exhibited certain limitations such as a low range of target detection, less biodegradability, subordinate half-life, and high susceptibility to microenvironments; however, a DNA-nanomaterial-based biosensor has overcome these limitations meaningfully. Additionally, the unique properties of nucleic acids have been studied extensively due to their high signal conduction abilities. Here, we review recent studies on DNA-nanomaterial-based biosensors, their mechanism of action, and improved/updated strategies in vivo and in situ. Furthermore, this review highlights the recent methodologies on DNA utilization to exploit the interfacial properties of nanomaterials in DNA sensing. Lastly, the review concludes with the limitations/challenges and future directions.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jang Hyeon Choi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|
2
|
Nanohydrogels: Advanced Polymeric Nanomaterials in the Era of Nanotechnology for Robust Functionalization and Cumulative Applications. Int J Mol Sci 2022; 23:ijms23041943. [PMID: 35216058 PMCID: PMC8875080 DOI: 10.3390/ijms23041943] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
In the era of nanotechnology, the synthesis of nanomaterials for advanced applications has grown enormously. Effective therapeutics and functionalization of effective drugs using nano-vehicles are considered highly productive and selectively necessary. Polymeric nanomaterials have shown their impact and influential role in this process. Polymeric nanomaterials in molecular science are well facilitated due to their low cytotoxic behavior, robust functionalization, and practical approach towards in vitro and in vivo therapeutics. This review highlights a brief discussion on recent techniques used in nanohydrogel designs, biomedical applications, and the applied role of nanohydrogels in the construction of advanced therapeutics. We reviewed recent studies on nanohydrogels for their wide applications in building strategies for advantageously controlled biological applications. The classification of polymers is based on their sources of origin. Nanohydrogel studies are based on their polymeric types and their endorsed utilization for reported applications. Nanotechnology has developed significantly in the past decades. The novel and active role of nano biomaterials with amplified aspects are consistently being studied to minimize the deleterious practices and side effects. Here, we put forth challenges and discuss the outlook regarding the role of nanohydrogels, with future perspectives on delivering constructive strategies and overcoming the critical objectives in nanotherapeutic systems.
Collapse
|
3
|
Wang C, Guan W, Chen R, Levi-Kalisman Y, Xu Y, Zhang L, Zhou M, Xu G, Dou H. Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential. NANO RESEARCH 2020; 13:3110-3122. [DOI: 10.1007/s12274-020-2981-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 08/29/2023]
|
4
|
Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int J Pharm 2020; 586:119605. [DOI: 10.1016/j.ijpharm.2020.119605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
|
5
|
Wang C, You J, Gao M, Zhang P, Xu G, Dou H. Bio-inspired gene carriers with low cytotoxicity constructed via the assembly of dextran nanogels and nano-coacervates. Nanomedicine (Lond) 2020; 15:1285-1296. [PMID: 32468909 DOI: 10.2217/nnm-2020-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate 'core' and a dextran nanogel 'shell' on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based 'shell' can effectively shield the positive charge of the peptide/gene coacervate 'core', thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.
Collapse
Affiliation(s)
- Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
6
|
Besford QA, Cavalieri F, Caruso F. Glycogen as a Building Block for Advanced Biological Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904625. [PMID: 31617264 DOI: 10.1002/adma.201904625] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom-up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer-sized dendrimer-like structure (20-150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material-based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
7
|
Chenglong W, Shuhan X, Jiayi Y, Wencai G, Guoxiong X, Hongjing D. Dextran-based coacervate nanodroplets as potential gene carriers for efficient cancer therapy. Carbohydr Polym 2020; 231:115687. [PMID: 31888837 DOI: 10.1016/j.carbpol.2019.115687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
The intractable toxicity of cationic polymers limits their applicability in gene transport and controlled release. In consideration of the good biocompatibility and biofunctionality of dextran, herein we design and synthesize two types of amino group-containing cationic copolymers based on dextran by the copolymerization of cationic monomers from dextran backbones. Additionally, allyl crosslinkers containing disulfide bonds were introduced into polymerization, that made the copolymer crosslinked by disulfide. The resultant coacervates were formed from the self-assembly of cationic coplymers and anionic genes, and redox-responsive disulfide branch points endow coacervates with reducing environment responsiveness. The in vitro experiments showed that the dextran-based coacervates were sensitive to the reducing environment and underwent cleavage, which resulted in an effective release, uptake, and transfection of the genes by 293T cells. In addition, dextran-based coacervates can be used to carry siRNA into cancer cells with a high transfection efficiency, demonstrating their potential applicability in treatment against cancer.
Collapse
Affiliation(s)
- Wang Chenglong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiong Shuhan
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - You Jiayi
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guan Wencai
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China
| | - Xu Guoxiong
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, PR China.
| | - Dou Hongjing
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
8
|
Quan L, Lin Z, Lin Y, Wei Y, Lei L, Li Y, Tan G, Xiao M, Wu T. Glucose-modification of cisplatin to facilitate cellular uptake, mitigate toxicity to normal cells, and improve anti-cancer effect in cancer cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater 2020; 103:247-258. [PMID: 31846802 DOI: 10.1016/j.actbio.2019.12.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
While drug resistance has been recognized as the main cause of unsuccessful chemotherapy, the efficient inhibition of highly drug-resistant tumors still remains a significant challenge, especially for in vivo treatments. Drug resistance has been associated with the high expression of the multi-drug resistance gene 1 (MDR1), which can encode an efflux transporter known as P-glycoprotein (P-gp) that is located in the cellular membrane. Therefore, the combined delivery of MDR1-inhibited genes and chemotherapeutic drugs is anticipated to enable the effective inhibition of drug-resistant tumors. Herein, highly paclitaxel (PTX)-resistant ovarian (OV) cancer with a drug resistance index reaching up to ~ 60 was chosen to evaluate the performance of an efficient gene/drug co-delivery nanocarrier. Inspired by the self-assembly that occurs in cells and exosomes, we designed a biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm to enhance the endocytosis and the efficiency of drug/gene release within the cells. This nanocarrier was fabricated via the frame-guided self-assembly of lipid amphiphiles on the surfaces of redox-cleavable dextran-based nanogels. The anionic MDR1-siRNA and the hydrophobic drug PTX were respectively loaded into the cationic lipid shell and the hydrophobic internal core of the hybrid nanocarriers. MDR1-siRNA can knock down MDR1, promoting the accumulation of PTX in cells, and thus is expected to achieve an efficient inhibitory effect against highly PTX-resistant cancer cells. Both in vitro and in vivo studies revealed that this dual-delivery system significantly enhanced the therapeutic effect in comparison with that provided by a PTX-only system. Thus, the construction of gene/chemo co-delivered lipid/dextran nanocarriers provides a new strategy to inhibit highly drug-resistant tumors both in vitro and in vivo. In addition, this work will contribute toward the development of urgently needed tumor nanotherapy that is able to overcome drug resistance while also offering an unmatched range of effective therapeutic nanocarriers. STATEMENT OF SIGNIFICANCE: The biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm, which was fabricated via the frame-guided self-assembly of lipid amphiphiles onto the surface of redox-cleavable dextran-based nanogels, provides a model carrier to co-deliver MDR1-siRNA and PTX. The MDR1-siRNA/PTX co-loaded biomimetic lipid/dextran hybrid nanocarriers demonstrate good capability in overcoming the PTX-resistance in highly chemo-resistant human ovarian (OV) cancer cells both in vitro and in vivo.
Collapse
|
10
|
Pinho AC, Vieira Branquinho M, Alvites RD, Fonseca AC, Caseiro AR, Santos Pedrosa S, Luís AL, Pires I, Prada J, Muratori L, Ronchi G, Geuna S, Santos JD, Maurício AC, Serra AC, Coelho JFJ. Dextran-based tube-guides for the regeneration of the rat sciatic nerve after neurotmesis injury. Biomater Sci 2020; 8:798-811. [PMID: 31904045 DOI: 10.1039/c9bm00901a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, dextran-based nerve tube-guides were prepared, characterized and used in a standardized animal model of neurotmesis injury. Non-porous and porous transparent tube-guides were obtained by photocrosslinking of two co-macromonomers based on dextran and poly(ε-caprolactone) (PCL). Swelling capacity of the tube-guides ranged from 40-60% with no visible constriction of their inner diameter. In vitro hydrolytic degradation tests showed that the tube-guides maintained their structural integrity up to 6 months. The in vivo performance of the tube-guides was evaluated by entubulation of the rat sciatic nerve after a neurotmesis injury, with a 10 mm-gap between the nerve stumps. The results showed that the tube-guides were able to promote the regeneration of the nerve in a similar manner to what was observed with conventional techniques (nerve graft and end-to-end suture). Stereological analysis proved that nerve regeneration occurred, and both tube-guides presented fibre diameter and g-ratio closer to healthy sciatic nerves. The histomorphometric analysis of Tibialis anterior (TA) skeletal muscle showed decreased neurogenic atrophy in the porous tube-guides treated group, presenting measurements that are similar to the uninjured control.
Collapse
Affiliation(s)
- Ana Catarina Pinho
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | - Mariana Vieira Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Rui Damásio Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Clotilde Fonseca
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | - Ana Rita Caseiro
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal and Vasco da Gama University School/Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Lúcia Luís
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Isabel Pires
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Justina Prada
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Luísa Muratori
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation and Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Giulia Ronchi
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation and Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Stefano Geuna
- CECAV and Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Department of Metallurgy and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Colette Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal and Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Arménio Coimbra Serra
- CEMMPRE, Department of Chemical Engineering, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| | | |
Collapse
|
11
|
Wang C, Wang F, Zhang J, Liu L, Xu G, Dou H. Fluorescent Polysaccharide Nanogels for the Detection of Tumor Heterogeneity in Drug-Surviving Cancer Cells. ACTA ACUST UNITED AC 2019; 4:e1900213. [PMID: 32293135 DOI: 10.1002/adbi.201900213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/03/2019] [Indexed: 12/19/2022]
Abstract
Tumor metastasis, recurrence, and drug resistance have been associated with tumor heterogeneity, and thus the identification of tumor heterogeneity has great significance in medicine. The approach provides a way to identify and isolate various cell subtypes from drug-surviving ovarian cancer cells, by synthesizing a series of polysaccharide nanogels and using them in flow cytometry analysis. The results show that the drug-surviving OVCAR-3 cells that are subjected to paclitaxel intervention comprise various cell subtypes, including drug-resistant and non-drug-resistant cell subtypes. Besides, there are significant differences between the drug-resistant cell subtype and non-drug-resistant cell subtype in terms of their migration and invasion behavior. In addition, the phenotype switch genes are detected by mRNA sequencing, and it is found that different subtypes show significant genetic differences with regard to their drug resistance, metastasis, and proliferation. In particular, modifying polysaccharide nanogels with lipids can promote the uptake of nanogels by drug-resistant cells, and thus the lipid modification can enhance the effectiveness of a chemotherapy drug carrier against drug-resistant cells. These studies reveal the heterogeneity of drug-surviving tumor cells, as well as the significant differences in drug-resistance, migration, and invasion capabilities of different subtypes, and demonstrate a way to overcome drug resistance.
Collapse
Affiliation(s)
- Chenglong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Lingshan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
12
|
Innovative tailor made dextran based membranes with excellent non-inflammatory response: In vivo assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110243. [PMID: 31761159 DOI: 10.1016/j.msec.2019.110243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022]
Abstract
In this work, dextran based membranes with potential to be used as implantable devices in Tissue Engineering and Regenerative Medicine (TERM) were prepared by a straightforward strategy. Briefly, two polymers approved by the Food and Drug Administration, viz. dextran and poly(ε-caprolactone) (PCL) were functionalized with methacrylate moieties, and subjected to photocrosslinking. Employing different weight ratios of each polymer in the formulations allowed to obtain transparent membranes with tunable physicochemical properties and low adverse host tissue response. Independently of the material, all formulations have shown to be thermally stable up to 300 °C whilst variations in the polymer ratio resulted in membranes with different glass transition temperatures (Tg) and flexibility. The swelling capacity ranged from 50% to 200%. On the other hand, in vitro hydrolytic degradation did not show to be material-dependent and all membranes maintained their structural integrity for more than 30 days, losing only 8-12% of their initial weight. Preliminary in vitro biological tests did not show any cytotoxic effect on seeded human dental pulp stem cells (hDPSCs), suggesting that, in general, all membranes are capable of supporting cell adhesion and viability. The in vivo biocompatibility of membranes implanted subcutaneously in rats' dorsum indicate that M100/0 (100%wt dextran) and M25/75 (25 %wt dextran) formulations can be classified as "slight-irritant" and "non-irritant", respectively. From the histological analysis performed on the main tissue organs it was not possible to detect any signs of fibrosis or necrosis thereby excluding the presence of toxic degradation by-products deposited or accumulated in these tissues. In combination, these results suggest that the newly developed formulations hold great potential as engineered devices for biomedical applications, where the biological response of cells and tissues are greatly dependent on the physical and chemical cues provided by the substrate.
Collapse
|
13
|
Novel Hybrid Dextran-Gadolinium Nanoparticles as High-relaxivity T1 Magnetic Resonance Imaging Contrast Agent for Mapping the Sentinel Lymph Node. J Comput Assist Tomogr 2019; 43:350-357. [PMID: 30875338 DOI: 10.1097/rct.0000000000000842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To assess the applicability of a novel hybrid dextran-gadolinium nanoparticles (NPs) as high-relaxivity T1 magnetic resonance imaging (MRI) contrast agent for mapping the sentinel lymph node (SLN). METHODS Dextran-bis-acrylamide-polyacrylic acid (Dex-MBA-PAA) NPs were synthesized through a self-assembly assisted approach and complexed with multiple chelated gadolinium (Gd) (III) ions. After their characterization was validated, they were used to mapping SLNs by MRI in Wistar rats, and their biosafety was evaluated. RESULTS Dextran-MBA-polyacrylic acid-Gd NPs have suitable particle size and much higher longitudinal relaxivity (r1) than that of commonly used clinical MRI contrast agents (eg, gadopentetic acid dimeglumine salt injection). The in vivo T1-weighted MRI results revealed their effectiveness at mapping SLNs. And their biological safety was also verified. CONCLUSIONS Dextran-MBA-polyacrylic acid-Gd NPs were synthesized and validated by in vitro and in vivo experiments for their ability to visualize SLNs by MRI with accurate positioning and excellent biosafety, and they have great potential for clinical SLN mapping.
Collapse
|
14
|
Mukwaya V, Wang C, Dou H. Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. POLYM INT 2018. [DOI: 10.1002/pi.5702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Chenglong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| |
Collapse
|
15
|
Wang H, Dai T, Li S, Zhou S, Yuan X, You J, Wang C, Mukwaya V, Zhou G, Liu G, Wei X, Dou H. Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs. Acta Biomater 2018; 72:206-216. [PMID: 29567106 DOI: 10.1016/j.actbio.2018.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of nanotherapeutics still remains a significant challenge. Most current approaches adopt a postpolymerization self-assembly strategy that follows a separate synthetic step and thus suffers from subgram scale yields and a limited range of application. In this study, we demonstrate the kilogram-scale formation of polysaccharide-polyacrylate nanocarriers at concentrations of up to 5 wt% through a one-pot approach - starting from various acrylate monomers and polysaccharides - that combines aspects of hydrophobicity-induced self-assembly with the free radical graft copolymerization of acrylate monomers from polysaccharide backbones into a single process that is thus denoted as a graft copolymerization induced self-assembly. We also demonstrate that this novel approach is applicable to a broad range of polysaccharides and acrylates. Notably, by choosing a crosslinker that bears a disulfide group and two vinyl capping groups to structurally lock the nanocarriers, the products are rendered cleavable in the reducing environments encountered at tumor sites and thus provide ideal candidates for the construction of anticancer nanotherapeutic systems. In vitro and in vivo studies demonstrated that the use of this nanocarrier for the delivery of doxorubicin hydrochloride (DOX) significantly decreased the side effects of DOX and improved the bio-safety of the chemotherapy accordingly. STATEMENT OF SIGNIFICANCE While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of these nanotherapeutics still remains a significant challenge. Most current approaches adopt a post-polymerization self-assembly strategy which that follows a separate synthetic step, and thus suffers from sub-gram scale yields and a limited range of application. In this study, the hydrophobic effect was combined with free radical polymerization to facilitate the graft copolymerization-induced self-assembly (GISA) of acrylate monomers with various hydrophobicities to construct cleavable polysaccharide-polyacrylate nanocarriers at a high efficiency with excellent potential for industrial-scale production. We envision that these nanocarriers will contribute to the development of tumor nanotheranostics that combine the biological functionalities of polysaccharides with the unmatched application-specific flexibility of nanocarriers.
Collapse
|
16
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Wang H, Dai TT, Lu BL, Li SL, Lu Q, Mukwaya V, Dou HJ. Hybrid Dextran-gadolinium Nano-suitcases as High-relaxivity MRI Contrast Agents. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2083-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Vicario-de-la-Torre M, Forcada J. The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy. Gels 2017; 3:E16. [PMID: 30920515 PMCID: PMC6318695 DOI: 10.3390/gels3020016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
Nanogels (NGs) are currently under extensive investigation due to their unique properties, such as small particle size, high encapsulation efficiency and protection of active agents from degradation, which make them ideal candidates as drug delivery systems (DDS). Stimuli-responsive NGs are cross-linked nanoparticles (NPs), composed of polymers, natural, synthetic, or a combination thereof that can swell by absorption (uptake) of large amounts of solvent, but not dissolve due to the constituent structure of the polymeric network. NGs can undergo change from a polymeric solution (swell form) to a hard particle (collapsed form) in response to (i) physical stimuli such as temperature, ionic strength, magnetic or electric fields; (ii) chemical stimuli such as pH, ions, specific molecules or (iii) biochemical stimuli such as enzymatic substrates or affinity ligands. The interest in NGs comes from their multi-stimuli nature involving reversible phase transitions in response to changes in the external media in a faster way than macroscopic gels or hydrogels due to their nanometric size. NGs have a porous structure able to encapsulate small molecules such as drugs and genes, then releasing them by changing their volume when external stimuli are applied.
Collapse
Affiliation(s)
| | - Jacqueline Forcada
- Bionanoparticles Group, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain.
| |
Collapse
|
19
|
Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems. Sci Rep 2017; 7:40011. [PMID: 28071743 PMCID: PMC5223173 DOI: 10.1038/srep40011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022] Open
Abstract
In order to overcome the key challenge in improving both fabrication efficiency and their drug delivery capability of anti-cancer drug delivery systems (ACDDS), here polyacrylic acid (PAA) grafted dextran (Dex) nanohydrogels (NGs) with covalent crosslinked structure bearing redox sensitive disulfide crosslinking junctions (Dex-SS-PAA) were synthesized efficiently through a one-step self-assembly assisted methodology (SAA). The Dex-SS-PAA were subsequently conjugated with doxorubicin through an acid-labile hydrazone bond (Dex-SS-PAA-DOX). The in vitro drug release behavior, anti-cancer effects in vivo, and biosafety of the as-prepared acid- and redox-dual responsive biodegradable NGs were systematically investigated. The results revealed that the Dex-SS-PAA-DOX exhibited pH- and redox-controlled drug release, greatly reduced the toxicity of free DOX, while exhibiting a strong ability to inhibit the growth of MDA-MB-231 tumors. Our study demonstrated that the Dex-SS-PAA-DOX NGs are very promising candidates as ACDDS for anti-cancer therapeutics.
Collapse
|
20
|
|
21
|
Matai I, Gopinath P. Chemically Cross-Linked Hybrid Nanogels of Alginate and PAMAM Dendrimers as Efficient Anticancer Drug Delivery Vehicles. ACS Biomater Sci Eng 2016; 2:213-223. [DOI: 10.1021/acsbiomaterials.5b00392] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ishita Matai
- Nanobiotechnology Laboratory, Centre
for Nanotechnology, and ‡Department of
Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - P. Gopinath
- Nanobiotechnology Laboratory, Centre
for Nanotechnology, and ‡Department of
Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
22
|
He S, Cong Y, Zhou D, Li J, Xie Z, Chen X, Jing X, Huang Y. A dextran-platinum(iv) conjugate as a reduction-responsive carrier for triggered drug release. J Mater Chem B 2015; 3:8203-8211. [PMID: 32262878 DOI: 10.1039/c5tb01496d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reduction-responsive nano-carriers have been confirmed to be promising for intracellular drug delivery. To develop multifunctional polymer-based drug delivery system, a novel dextran-Pt(iv) conjugate was synthesized by conjugating Pt(iv) to the side chains of the hydrophilic dextran and used for doxorubicin (DOX) delivery. Pt(iv) conjugation could change the hydrophilicity of dextran, leading to the self-assembly of dextran-Pt(iv) conjugates with different morphologies. Pt(iv) segments served as the key components in assembly formation and as the antitumor prodrug. Under a reductive environment, Pt(iv) was found to be reduced to its active Pt(ii) form and cleaved from dextran, shifting the hydrophilic-hydrophobic balance of the dextran-Pt(iv) conjugate. The collapse of the assembly structure due to the partial or complete recovery of the hydrophilicity of dextran led to triggered release of DOX. The DOX-loaded dextran-Pt(iv) conjugate obtained by combining the released hydrophobic DOX and recovered hydrophilic Pt(ii), was found to be very effective as an antitumor agent as demonstrated in in vitro cytotoxicity evaluations. This DOX-loaded dextran-Pt(iv) conjugate system provided a new strategy to trigger the release of hydrophobic and hydrophilic drugs at the same time via single reduction-responsive control to provide an enhanced anti-tumor effect.
Collapse
Affiliation(s)
- Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Soft fluorescent nanomaterials have attracted recent attention as imaging agents for biological applications, because they provide the advantages of good biocompatibility, high brightness, and easy biofunctionalization. Here, we provide a survey of recent developments in fluorescent soft nano-sized biological imaging agents. Various soft fluorescent nanoparticles (NPs) (including dye-doped polymer NPs, semiconducting polymer NPs, small-molecule organic NPs, nanogels, micelles, vesicles, and biomaterial-based NPs) are summarized from the perspectives of preparation methods, structure, optical properties, and surface functionalization. Based on both optical and functional properties of the nano-sized imaging agents, their applications are then reviewed in terms of in vitro imaging, in vivo imaging, and cellular-process imaging, by means of specific or nonspecific targeting.
Collapse
Affiliation(s)
- Hong-Shang Peng
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
24
|
Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials 2014; 35:8227-35. [DOI: 10.1016/j.biomaterials.2014.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022]
|
25
|
Liu G, An Z. Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polym Chem 2014; 5:1559-1565. [DOI: 10.1039/c3py01502e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
26
|
Zhou S, Min X, Dou H, Sun K, Chen CY, Chen CT, Zhang Z, Jin Y, Shen Z. Facile fabrication of dextran-based fluorescent nanogels as potential glucose sensors. Chem Commun (Camb) 2013; 49:9473-5. [DOI: 10.1039/c3cc45668d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|