1
|
Castanedo LAM, Matta CF. Prebiotic N-(2-Aminoethyl)-Glycine (AEG)-Assisted Synthesis of Proto-RNA? J Mol Evol 2024:10.1007/s00239-024-10185-w. [PMID: 39052031 DOI: 10.1007/s00239-024-10185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.
Collapse
Affiliation(s)
- Lázaro A M Castanedo
- Department of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada
| | - Chérif F Matta
- Department of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada.
- Département de Chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| |
Collapse
|
2
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
3
|
Schofield P, Taylor AI, Rihon J, Peña Martinez CD, Zinn S, Mattelaer CA, Jackson J, Dhaliwal G, Schepers G, Herdewijn P, Lescrinier E, Christ D, Holliger P. Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif. Nucleic Acids Res 2023; 51:7736-7748. [PMID: 37439359 PMCID: PMC10450178 DOI: 10.1093/nar/gkad592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemical and functional scope. XNAs can be evolved into ligands (XNA aptamers) that bind their targets with high affinity and specificity. However, detailed investigations into structural and functional aspects of XNA aptamers have been limited. Here we describe a detailed structure-function analysis of LYS-S8-19, a 1',5'-anhydrohexitol nucleic acid (HNA) aptamer to hen egg-white lysozyme (HEL). Mapping of the aptamer interaction interface with its cognate HEL target antigen revealed interaction epitopes, affinities, kinetics and hot-spots of binding energy similar to protein ligands such as anti-HEL-nanobodies. Truncation analysis and molecular dynamics (MD) simulations suggest that the HNA aptamer core motif folds into a novel and not previously observed HNA tertiary structure, comprising non-canonical hT-hA-hT/hT-hT-hT triplet and hG4-quadruplex structures, consistent with its recognition by two different G4-specific antibodies.
Collapse
Affiliation(s)
- Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW 2010, Australia
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Jérôme Rihon
- Rega Institute, Laboratory of Medicinal Chemistry, Katholieke Universiteit Leuven, Herestraat 49, B 3000, Leuven, Belgium
| | - Cristian D Peña Martinez
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW 2010, Australia
| | - Sacha Zinn
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW 2010, Australia
| | - Charles-Alexandre Mattelaer
- Rega Institute, Laboratory of Medicinal Chemistry, Katholieke Universiteit Leuven, Herestraat 49, B 3000, Leuven, Belgium
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gurpreet Dhaliwal
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Guy Schepers
- Rega Institute, Laboratory of Medicinal Chemistry, Katholieke Universiteit Leuven, Herestraat 49, B 3000, Leuven, Belgium
| | - Piet Herdewijn
- Rega Institute, Laboratory of Medicinal Chemistry, Katholieke Universiteit Leuven, Herestraat 49, B 3000, Leuven, Belgium
| | - Eveline Lescrinier
- Rega Institute, Laboratory of Medicinal Chemistry, Katholieke Universiteit Leuven, Herestraat 49, B 3000, Leuven, Belgium
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW 2010, Australia
| | | |
Collapse
|
4
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
5
|
Shaver A, Kundu N, Young BE, Vieira PA, Sczepanski JT, Arroyo-Currás N. Nuclease Hydrolysis Does Not Drive the Rapid Signaling Decay of DNA Aptamer-Based Electrochemical Sensors in Biological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5213-5221. [PMID: 33876937 PMCID: PMC8176561 DOI: 10.1021/acs.langmuir.1c00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors are a technology capable of real-time monitoring of drug concentrations directly in the body. These sensors achieve their selectivity from surface-attached aptamers, which alter their conformation upon target binding, thereby causing a change in electron transfer kinetics between aptamer-bound redox reporters and the electrode surface. Because, in theory, aptamers can be selected for nearly any target of interest, E-AB sensors have far-reaching potential for diagnostic and biomedical applications. However, a remaining critical weakness in the platform lies in the time-dependent, spontaneous degradation of the bioelectronic interface. This progressive degradation-seen in part as a continuous drop in faradaic current from aptamer-attached redox reporters-limits the in vivo operational life of E-AB sensors to less than 12 h, prohibiting their long-term application for continuous molecular monitoring in humans. In this work, we study the effects of nuclease action on the signaling lifetime of E-AB sensors, to determine whether the progressive signal loss is caused by hydrolysis of DNA aptamers and thus the loss of signaling moieties from the sensor surface. We continuously interrogate sensors deployed in several undiluted biological fluids at 37 °C and inject nuclease to reach physiologically relevant concentrations. By employing both naturally occurring d-DNA and the nuclease-resistant enantiomer l-DNA, we determine that within the current lifespan of state-of-the-art E-AB sensors, nuclease hydrolysis is not the dominant cause of sensor signal loss under the conditions we tested. Instead, signal loss is driven primarily by the loss of monolayer elements-both blocking alkanethiol and aptamer monolayers-from the electrode surface. While use of l-DNA aptamers may extend the E-AB operational life in the long term, the critical issue of passive monolayer loss must be addressed before those effects can be seen.
Collapse
Affiliation(s)
- Alexander Shaver
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, United States
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Brian E Young
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Philip A Vieira
- Department of Psychology, California State University Dominguez Hills, Carson, California 90747, United States
| | - Jonathan T Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, United States
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N. An ultra-sensitive optical aptasensor based on gold nanoparticles/poly vinyl alcohol hydrogel as acceptor/emitter pair for fluorometric detection of digoxin with on/off/on strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119345. [PMID: 33465528 DOI: 10.1016/j.saa.2020.119345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A novel nanobiosensor was prepared by aptamer and gold nanoparticles conjugate in poly vinyl alcohol hydrogel for sensitive detection of digoxin in human plasma samples. The developed nanobiosensor was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering instrument. In this sensor the hydrogel acted as a fluorescent probe. The fluorescence intensity of the hydrogel was quenched by aptamer stabilized gold nanoparticles as energy acceptor. Upon addition of digoxin, the aptamer/drug complex was formed and the fluorescence of the hydrogel was restored because of destabilization and aggregation of gold nanoparticles in the presence of salt. The affecting parameters on the nanobiosensor performance were assessed and under the optimized conditions the external and in plasma calibration curves were linear in the 10-1000 ng L-1 digoxin concentration range with detection limits of 2.9 and 3.1 ng L-1, respectively. The relative standard deviations for 5 replicate determinations of 50, 250, and 500 ng L-1 of digoxin, were 7.3, 5.1, and 3.8%, respectively. This nanofluoroprobe was successfully applied for determination of digoxin in spiked plasma samples without any pretreatment procedure.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Lee G, Kang SM, Lee SB, Lee D, Ko Y, Nam J, Jo J, Hah SS. Monitoring of
Cell‐Dependent
Reduced States Using
Aptamer‐Functionalized Reduction‐Sensitive
Quantum Dots. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gwan‐Ho Lee
- Advanced Analysis Center Korea Institute of Science and Technology Seoul 02792 South Korea
| | - Sung Muk Kang
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| | - Soo Bin Lee
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| | - Dohyun Lee
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| | - Youngkuk Ko
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| | - Jungyeon Nam
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| | - Juhyun Jo
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| | - Sang Soo Hah
- Department of Chemistry and Research Institute of Basic Sciences Kyung Hee University 26 Kyunghee‐daero Seoul 02447 South Korea
| |
Collapse
|
8
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S, Vaisman A, Woodgate R, Orozco M, Holliger P. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat Chem 2019; 11:533-542. [PMID: 31011171 DOI: 10.1038/s41557-019-0255-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
Collapse
Affiliation(s)
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vito Genna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Roger Woodgate
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
10
|
Wang X, Li L, Khan RU, Qu F. Peptide nucleic acid and amino acid modified peptide nucleic acid analysis by capillary zone electrophoresis. Electrophoresis 2019; 40:1055-1060. [PMID: 30618153 DOI: 10.1002/elps.201800312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
A rapid, high resolution, and low sample consumption CZE method is developed for peptide nucleic acid (PNA) analysis for the first time. 30% v/v acetonitrile in PNA sample and 20% v/v acetonitrile in 50 mM borax-boric acid (pH 8.7) as BGE were employed after optimization. The calibration curves were linear for PNA concentration ranging from 1 to 50 μmol/L. LOD and LOQ of PNA were 0.2 and 1.0 μmol/L, respectively. Since the commercially available reagent gives rise to huge PNA peak and an apparent impurity peak, the purity of PNA was evaluated to be about 81.4% by CZE method, obviously lower than the supplier's purity value of 99.9% evaluated by RP-HPLC, and also lower than 94.8% determined with RP-HPLC by our research group. The CZE method takes only 5 min, needs only 90 nL PNA, much less than 20 min and 20 μL PNA in RP-HPLC method. Moreover, the CZE method is applicable for the analysis of glutamic acid modified and lysine modified PNAs, they show different migration time with their corresponding complementary PNAs. Our results show CZE provides a new choice for PNA and modified PNA analysis, also their purity or quality evaluation.
Collapse
Affiliation(s)
- Xiaoqian Wang
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Linsen Li
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Rizwan Ullah Khan
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
11
|
WANG XQ, Ghulam M, ZHU C, QU F. Online Capillary Electrophoresis Reaction for Interaction Study of Amino Acid Modified Peptide Nucleic Acid and Proteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61129-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Critical role of select peptides in the loop region of G-rich PNA in the preferred G-quadruplex topology and stability. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Ellipilli S, vasudeva Murthy R, Ganesh KN. Perfluoroalkylchain conjugation as a new tactic for enhancing cell permeability of peptide nucleic acids (PNAs) via reducing the nanoparticle size. Chem Commun (Camb) 2015; 52:521-4. [PMID: 26535419 DOI: 10.1039/c5cc05342k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perfluoro undecanoyl chain conjugated peptide nucleic acids (PNAs) show 2.5 to 3 fold higher cellular uptake efficiency in NIH 3T3 and HeLa cells compared to simple undecanoyl PNAs. Fluorination of PNAs leads to the formation of lower size (∼100-250 nm) nanoparticles compared to larger size (∼500 nm) nanoparticles from non-fluorinated PNAs, thereby improving the efficiency of cell penetration.
Collapse
Affiliation(s)
- Satheesh Ellipilli
- Chemical Biology Unit, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
| | | | | |
Collapse
|
14
|
Suh SK, Song S, Oh HB, Hwang SH, Hah SS. Aptamer-based competitive binding assay for one-step quantitation of hepatitis B surface antigen. Analyst 2015; 139:4310-4. [PMID: 24987752 DOI: 10.1039/c4an00619d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An aptamer-based competitive binding assay for one-step (i.e. no requirement of pre-treatment) quantitation of target molecules of interest has been developed. This method has been successfully employed for the fast and sensitive detection of the surface antigen of the hepatitis B virus (HBsAg). The key features of our method include its low intrinsic background noise, low costs, high resolution, and high sensitivity, enabling the detection of as low as 1.25 mIU mL(-1), approximately 40-fold better than that of the most widely used Abbott Architect assay for HBsAg detection, without the tedious extraction and/or washing procedures. Moreover, this assay has better recovery and accuracy than that of conventional competitive binding assay or others for HBsAg quantitation.
Collapse
Affiliation(s)
- Sung-Kwan Suh
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea.
| | | | | | | | | |
Collapse
|
15
|
Urmann K, Tenenbaum E, Walter JG, Segal E. Porous Silicon Biosensors Employing Emerging Capture Probes. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20346-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Zhang Y, Li H, Huang Y, Yin T, Sun L, Li G. Sensitive detection of a serum biomarker based on peptide nucleic acid-coupled dual cycling reactions. Anal Chim Acta 2015; 882:27-31. [PMID: 26043088 DOI: 10.1016/j.aca.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Serum level of disease markers may provide important guidance for diagnosis and prognosis. In this work, a sensitive and specific method suitable for direct serum detection of biomarkers is developed based on peptide nucleic acid (PNA)-coupled DNA cycling reactions with dual amplification. In this method, PNA released from a target-triggered homogeneous DNA cycling is employed to initiate an interface DNA cycling, and both of the cycling reactions are based on polymerase-assisted strand displacement reaction. Consequently, two PNA-coupled DNA cycling steps can take place simultaneously in one-pot, leading to greatly enhanced limit of detection and simplified operation. This method has also been successfully applied for evaluating serum insulin in pregnant women as an indicator of gestational diabetes mellitus. So the application of this method in real bio-samples may allow it to hold considerable potential in clinical practice. In addition, since there is no requirement for specific sequence of aptamer, the strategy proposed can be extended for the detection of many other protein markers and peptide-hormones in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China
| | - Yue Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China
| | - Tingting Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China; Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
17
|
He XP, Zang Y, James TD, Li J, Chen GR. Probing disease-related proteins with fluorogenic composite materials. Chem Soc Rev 2014; 44:4239-4248. [PMID: 25474366 DOI: 10.1039/c4cs00252k] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Construction of composite materials based on the self-assembly of fluorescently labeled biomolecules with a variety of micro- or nano-quenching materials (by the Förster Resonance Energy Transfer mechanism) for the fluorogenic recognition of disease-related proteins has become a dynamic research topic in the field of fluorescence recognition. Here we summarize the recent progress on the composition of fluorescence dye-labeled biomolecules including sugars, peptides and nucleotides with organic (graphene and carbon nanotubes) and inorganic (gold nanoparticles) materials. Their application in the fluorescence detection of proteins and enzymes on both the molecular and cellular levels is discussed. Perspectives are proposed with respect to the future directions of employing these composite materials in the recognition of pathological proteins.
Collapse
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai 200237, PR China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences (CAS), 189 Guo Shoujing Rd., Shanghai 201203, PR China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences (CAS), 189 Guo Shoujing Rd., Shanghai 201203, PR China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai 200237, PR China.
| |
Collapse
|
18
|
Sabale PM, George JT, Srivatsan SG. A base-modified PNA-graphene oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats. NANOSCALE 2014; 6:10460-9. [PMID: 24981293 DOI: 10.1039/c4nr00878b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | |
Collapse
|
19
|
Kang S, Hah SS. Improved ligand binding by antibody-aptamer pincers. Bioconjug Chem 2014; 25:1421-7. [PMID: 25010569 DOI: 10.1021/bc500269y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To increase the affinities of antibodies or aptamers for their targets, we designed antibody-aptamer pincers (AAPs) or heterodimers for thrombin or human epidermal growth factor 2 (HER2) as a model system. For this purpose, we first conjugated a 15-mer or 29-mer anti-thrombin aptamer, which are well-known to bind to thrombin in two specific epitopes, with an anti-thrombin antibody to enable each binding part of the AAP to simultaneously recognize a different part of the thrombin molecule. The AAP comprising a 15-mer aptamer and an anti-thrombin antibody has an apparent dissociation constant (Kd(app)) value of 567 pM, and this value is approximately 1/100 of that of the antibody alone or 1/35 of that of the aptamer monomer alone. The AAP comprising a 29-mer aptamer and an anti-thrombin antibody has a much lower Kd(app) value than that of 15-mer aptamer-conjugated antibody. Furthermore, this concept of the AAP system was employed to HER2-targeted drug delivery system (DDS) based on both antibody and drug-loaded aptamer. Anti-HER2 aptamer was conjugated with anti-HER2 antibody and loaded with doxorubicin, and the resulting AAP-HER2-Dox was found to have approximately 3- and 6-fold higher cytotoxicity than drug alone and antibody alone, respectively. Therefore, this novel AAP system constructed by conjugation of the antibody with the aptamer can effectively improve the affinities of the resulting AAPs for their target molecules and the drug-loaded AAP system can possibly serve as a platform for targeted DDS against many malignancies.
Collapse
Affiliation(s)
- Sungmuk Kang
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University , 1 Hoegi-dong Dongdaemun-gu, Seoul 131-701, South Korea
| | | |
Collapse
|
20
|
Park JH, Cho YS, Kang S, Lee EJ, Lee GH, Hah SS. A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay. Anal Biochem 2014; 462:10-2. [PMID: 24937288 DOI: 10.1016/j.ab.2014.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
A colorimetric sandwich-type assay based on enzyme-linked aptamer assay has been developed for the fast and sensitive detection of as low as 25 fM of thrombin with high linearity. Aptamer-immobilized glass was used to capture the target analyte, whereas a second aptamer, functionalized with horseradish peroxidase (HRP), was employed for the conventional 3,5,3',5'-tetramethylbenzidine (TMB)-based colorimetric detection. Without the troublesome antibody requirement of the conventional enzyme-linked immunosorbent assay (ELISA), as low as 25 fM of thrombin could be rapidly and reproducibly detected. This assay has superior, or at least equal, recovery and accuracy to that of conventional antibody-based ELISA.
Collapse
Affiliation(s)
- Jun Hee Park
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yea Seul Cho
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sungmuk Kang
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Eun Jeong Lee
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gwan-Ho Lee
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang Soo Hah
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
21
|
Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J. Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2014; 2:4593-4609. [DOI: 10.1039/c4tb00598h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of conductive polymer nanowires and their sensing of nucleic acids, proteins and pathogens is reviewed in this feature article.
Collapse
Affiliation(s)
- J. Travas-Sejdic
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - N. Aydemir
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - B. Kannan
- Revolution Fibres Ltd
- , New Zealand
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - D. E. Williams
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - J. Malmström
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| |
Collapse
|