1
|
Ghosh T, Mandal M, Shee M, Das TK, Mandal M, Banerji P, Das NC. Fabrication of Folic Acid-Derived Carbon Dot-Conjugated Chitosan Nanospheres as Theragnostic Agents for pH-Responsive Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2025; 8:3096-3110. [PMID: 40067833 DOI: 10.1021/acsabm.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The favorable success rate in cancer treatment predominantly depends on precise diagnosis with target-specific drug delivery, which can regulate the patient survival outcome rate. Moreover, proper tracking of the system's pH is very much crucial as most of the therapeutic's action and release rate depend on it. Therefore, this work has been intended to fabricate a folic acid-derived carbon dot (FACD) decorated with chitosan (Cs) in order to form nanospheres (FACD-Cs-Ns) for anticancer doxorubicin hydrochloride (Dox.HCl) drug delivery through imaging in cancer therapeutic treatment. The engineered FACD-Cs-Ns demonstrated a spherical shape with an extensive surface area, rich in carboxyl and hydroxyl groups that play a key role in its pH-responsive characteristics through protonation and deprotonation interactions. Thanks to their impressive fluorescence traits and excellent stability, FACD-Cs-Ns are particularly well suited for imaging-guided cancer therapy. Their remarkable cytocompatibility with normal cells and significant toxicity toward cancer cells, along with pH-responsive properties, render them as ideal candidates for targeted drug delivery to cancer cells. The G2/M and S phases' arrest in the cell cycle analysis study once more validated excellent in vitro experimental conditions. The impressive selectivity and cytotoxicity of Dox-loaded FACD-Cs-Ns toward cancer cells can be attributed to enhanced cellular uptake via folate-receptor-mediated endocytosis, which is overexpressed in these cells. These findings elucidate that the FACD-Cs-Ns nanoprobe is an excellent material for pH-responsive anticancer drug delivery and image-guided cancer therapy.
Collapse
Affiliation(s)
- Trisita Ghosh
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Madhurima Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Moumita Shee
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Tushar Kanti Das
- Institute of Physics─Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice 40-019, Poland
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Pallab Banerji
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Narayan Ch Das
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
2
|
Dechsri K, Suwanchawalit C, Patrojanasophon P, Opanasopit P, Pengnam S, Charoenying T, Taesotikul T. Photodynamic Antibacterial Therapy of Gallic Acid-Derived Carbon-Based Nanoparticles (GACNPs): Synthesis, Characterization, and Hydrogel Formulation. Pharmaceutics 2024; 16:254. [PMID: 38399308 PMCID: PMC10891664 DOI: 10.3390/pharmaceutics16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon-based nanoparticles (CNPs) have gained recognition because of their good biocompatibility, easy preparation, and excellent phototherapy properties. In biomedicine applications, CNPs are widely applied as photodynamic agents for antibacterial purposes. Photodynamic therapy has been considered a candidate for antibacterial agents because of its noninvasiveness and minimal side effects, especially in the improvement in antibacterial activity against multidrug-resistant bacteria, compared with conventional antibiotic medicines. Here, we developed CNPs from an active polyhydroxy phenolic compound, namely, gallic acid, which has abundant hydroxyl groups that can yield photodynamic effects. Gallic acid CNPs (GACNPs) were rapidly fabricated via a microwave-assisted technique at 200 °C for 20 min. GACNPs revealed notable antibacterial properties against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The minimum inhibitory concentrations of GACNPs in S. aureus and E. coli were equal at approximately 0.29 mg/mL and considerably lower than those in gallic acid solution. Furthermore, the GACNP-loaded hydrogel patches demonstrated an attractive photodynamic effect against S. aureus, and it was superior to that of Ag hydrofiber®, a commercial material. Therefore, the photodynamic properties of GACNPs can be potentially used in the development of antibacterial hydrogels for wound healing applications.
Collapse
Affiliation(s)
- Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Cheewita Suwanchawalit
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Theerada Taesotikul
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Kariminia S, Shamsipur M, Barati A. Fluorescent folic acid-chitosan/carbon dot for pH-responsive drug delivery and bioimaging. Int J Biol Macromol 2024; 254:127728. [PMID: 38287587 DOI: 10.1016/j.ijbiomac.2023.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Nowadays, one of the most important reasons of death in the world is cancer. With the development of nanotechnology, advanced methods for treatment of cancer have introduced. In this work, the fluorescent carbon dots (CDs) were prepared from chitosan as the second abundant polysaccharide present in the nature. The surface of CDs was modified with chitosan (CDs/CS) and then the amino groups of chitosan were conjugated with activated folic acid (CDs/CS-FA) for controlled delivery of doxorubicin (DOX) as anticancer drug against HeLa cancer cells. The DOX loading efficiency of fluorescent CDs/CS-FA was high and nearly 60 %. Due to pH sensitive swelling/deswelling of CS, the percentage of cumulative DOX release could reach 90 % at cancer tissue (pH of 5.0) and 52 % at normal tissue (pH of 7.4) within 30 h. The cytotoxicity study revealed that the synthesized CDs were highly compatible on HeLa cells with cell viability 97-88 %. Cellular imaging shows that the entry of CDs/CS-FA to HeLa cells causes a green fluorescence, while the CDs/CS without FA have a negligible fluorescence. These results are due to the important role of FA in cell internalization. Thus, the CDs/CS-FA nanocarrier is suitable candidate for controlled pH sensitive drug delivery and cellular imaging.
Collapse
Affiliation(s)
| | | | - Ali Barati
- Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
4
|
Meng Y, Liu Y, Guo Q, Xu H, Jiao Y, Yang Z, Shuang S, Dong C. Strategy to synthesize dual-emission carbon dots and their application for pH variation and hydrogen sulfide sensing and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122483. [PMID: 36812757 DOI: 10.1016/j.saa.2023.122483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In this work, dual emission nitrogen and sulfur co-doped fluorescent carbon dots (DE-CDs) were designed for pH variation and hydrogen sulfide (H2S) sensing and bioimaging through fluorescence enhancement. The DE-CDs with green-orange emission were facilely prepared by one-pot hydrothermal strategy using neutral red and sodium 1,4-dinitrobenzene sulfonate as precursors, manifesting intriguing dual-emission behavior at 502 and 562 nm. As the pH increases from 2.0 to 10.2, the fluorescence of DE-CDs gradually increases. The linear ranges are 2.0-3.0 and 5.4-9.6, respectively, which are attributed to the abundant amino groups on the surface of the DE-CDs. Meanwhile, H2S can be employed as an enhancer to increase the fluorescence of DE-CDs. The linear range is 25-500 μM, and the LOD is calculated to be 9.7 μM. Besides, the DE-CDs can be used as imaging agents for pH variation and H2S sensing in living cells and zebrafish due to their low toxicity and good biocompatibility. All of the results demonstrated that the DE-CDs can monitor pH fluctuations and H2S in aqueous and biological environments, and have promising applications in the fields of fluorescence sensing, disease detection, and bioimaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qiaozhi Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hongmei Xu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Zhenhua Yang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Meng Y, Guo Q, Xu H, Jiao Y, Liu Y, Shuang S, Dong C. Strategy to synthesize long-wavelength emission carbon dots and their multifunctional application for pH variation and arginine sensing and bioimaging. Talanta 2023; 254:124180. [PMID: 36535213 DOI: 10.1016/j.talanta.2022.124180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
In this work, we designed N and S co-doped carbon dots (N,S-CDs) with long-wavelength emission and their multifunctional application in pH variation, arginine (Arg) sensing, bioimaging in living cells and zebrafish, and fluorescent materials. The N,S-CDs with excitation wavelength-dependent properties were prepared using neutral red (NR) and dl-methionine (DL-Met) as raw materials by one-pot hydrothermal strategy. The N,S-CDs exhibited a unique pH-sensitive luminescence trait within pH range of 3.2-11.0 and have great linear relationship of 4.8-8.0, which indicating their potential application as an imaging reagent in physiological environments. Arg can quench the PL of N,S-CDs due to static quenching. (SQ). The linear range is 2.5-62.5 μM and the LOD is calculated as 0.68 μM. Furthermore, the as-proposed N,S-CDs can be applied as imaging reagents for monitoring of pH and Arg in vivo and vitro owing to outstanding biocompatibility and low cytotoxicity. Interestingly, the N,S-CDs were also used in fluorescent composite films and phosphors owing to exceptional optical properties. All these results indicate that the N,S-CDs have huge potentiality in the areas of fluorescence sensing, bioimaging and fluorescent materials.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Qiaozhi Guo
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hongmei Xu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Yang Liu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
6
|
Meng Y, Zhang Z, Zhao H, Jiao Y, Li J, Shuang S, Dong C. Facile synthesis of multifunctional carbon dots with 54.4% orange emission for label-free detection of morin and endogenous/exogenous hypochlorite. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127289. [PMID: 34879505 DOI: 10.1016/j.jhazmat.2021.127289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Carbon dots with long-wavelength emission (orange to red), high quantum yield (QY) and good biocompatibility are of great significance for biomedical applications, but achieving this is still a highly challenging task. In this work, multifunctional carbon dots with 54.4% orange emission (O-CDs) were prepared through one-pot solvothermal treatment of nileblueasulphate and citric acid as precursor for label-free recognition of morin and endogenous/exogenous hypochlorite (ClO-) and bioimaging in cellular and zebrafish. Morin can quench the luminescence of O-CDs by static quenching (SQ). The linear range is 5-125 μM and LOD is 0.84 μM. ClO- reduce the photoluminescence intensity of O-CDs via SQ. The linear range is 2.5-90 μM and LOD was 0.46 μM. In addition, The obtained O-CDs have successfully realized the monitoring of morin and endogenous/ exogenous ClO- in living cells and zebrafish owing to its superior biocompatibility, exceptional photostability and lower toxicity. This work opens up a novel opportunity for the development of long-wavelength emission multifunctional nanomaterial with high quantum yield based on CDs for biosensing, biolabeling and biomedical optical imaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhuqing Zhang
- Integrated Center for Inspection and Testing of Changzhi City, Changzhi 046000, China
| | - Hongxia Zhao
- Integrated Center for Inspection and Testing of Changzhi City, Changzhi 046000, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jun Li
- National University of Singapore Natl Univ Singapore, Fac Engn, Dept Biomed Engn, 7 Engn Dr 1, Singapore 117574, Singapore
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Meng Y, Jiao Y, Zhang Y, Lu W, Wang X, Shuang S, Dong C. Facile synthesis of orange fluorescence multifunctional carbon dots for label-free detection of vitamin B 12 and endogenous/exogenous peroxynitrite. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124422. [PMID: 33183837 DOI: 10.1016/j.jhazmat.2020.124422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, orange emission fluorescent multifunctional carbon dots (O-CDs) were designed for the label-free detection of vitamin B12 (VB12),endogenous/exogenous peroxynitrite (ONOO-) sensing, cell imaging, and fluorescent flexible film preparation. The O-CDs with excitation-independent were prepared using safranine T and ethanol as precursors via one-step hydrothermal process. VB12 was utilized as a quencher to quench the fluorescence of O-CDs due to the internal filtration effect (IFE). Two-segment linear ranges are 1-65 μM and 70-140 μM, and the detection limit was calculated as 0.62 μM. Besides, ONOO- can reduce the fluorescence intensity of O-CDs based on static quenching (SQ). The linear ranges are 0.3-9 μM and 9-48 μM, and the detection limit was 0.06 μM. Moreover, the O-CDs were exploited as a cellular imaging reagent for intracellular VB12 and endogenous/exogenous ONOO- imaging owing to its great biocompatibility, low toxicity and strong photostability. These results indicate that O-CDs have the potential to be used as a sensitive fluorescence probe to rapidly monitor VB12 and endogenous/exogenous ONOO- with high selectivity in living cells. Also, the as-proposed O-CDs can be employed to fabricate O-CDs/PVA composites as fluorescent flexible films. All of the above prove that the O-CDs present great prospect in multiple applications such as biosensing, cellular labeling, biomedical optical imaging, and fluorescent films.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Wang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
8
|
Meng Y, Jiao Y, Zhang Y, Zhang H, Gong X, Liu Y, Shuang S, Dong C. One-step synthesis of red emission multifunctional carbon dots for label-free detection of berberine and curcumin and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119432. [PMID: 33472136 DOI: 10.1016/j.saa.2021.119432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this work, the red emission multifunctional carbon dots (R-CDs) were prepared via one-pot hydrothermal strategy of neutral red (NR) and ethylenediamine (EDA) for the label-free detection of berberine and curcumin, cell imaging, and fluorescent flexible film. The as-fabricated R-CDs not only possess good water dispersibility and excellent fluorescence stability, but also were successfully employed as a photoluminescent nanoprobe for label-free monitoring of berberine (BRH) and curcumin (Cur) based on dynamic quenching and internal filter effect (IFE), respectively. More importantly, as-proposed R-CDs displayed outstanding cellular permeability and lower cytotoxicity for cellular applications, which was consistent with the results of confocal fluorescence imaging and cell viability measurement of SMMC7721 cells. Thus, the multifunctional R-CDs may provide a rich tool library for biosensing and cellular imaging reagent applications. Interestingly, R-CDs were also used to manufacture R-CDs/PVA composites as fluorescent flexible films. To the best of our knowledge, this is the first demonstration of a label-free multifunctional fluorescent nanoprobe for berberine and curcumin based on red emission CDs.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Huilin Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
Meng Y, Zhang H, Li M, Lu W, Liu Y, Gong X, Shuang S, Dong C. A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomater Sci 2021; 9:2255-2261. [PMID: 33533378 DOI: 10.1039/d0bm02047h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular pH and hypochlorite (ClO-) concentration play an important role in life activities, so there is an urgent need to develop a valid strategy to monitor pH and ClO- in biological systems with high sensitivity and specificity. In this study, we report long-wavelength emission nitrogen-doped carbon dots (N-CDs) and their potential applications in intracellular pH variation, ClO- sensing and cell imaging. The N-CDs were prepared via a facile one-pot hydrothermal method of neutral red (NR) and glutamine (Gln). N-CDs exhibited a pH-sensitive response in the range of 4.0-9.0 and a good linear relationship in the range of 5.6-7.4, which indicated that N-CDs are an ideal agent for monitoring pH fluctuations in living cells. In addition, ClO- was capable of reducing the photoluminescence of N-CDs based on static quenching. The linear range is 1.5-112.5 μM and 112.5-187.5 μM, and the LOD is 0.27 μM. Besides, the as-fabricated N-CDs have been smoothly achieved to monitor pH and ClO- in PC-12 living cells due to their great biocompatibility and lower cytotoxicity, demonstrating their promising applications in the biomedical field. Compared with other CD-based methods, the as-proposed N-CDs have a longer fluorescence emission, which makes them potentially valuable in biological systems. The results pave a way towards the construction of long-wavelength carbon-based nanomaterials for fluorescence sensing and cell imaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, No. 92 Wucheng rd., Taiyuan 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cohen EN, Kondiah PPD, Choonara YE, du Toit LC, Pillay V. Carbon Dots as Nanotherapeutics for Biomedical Application. Curr Pharm Des 2020; 26:2207-2221. [PMID: 32238132 DOI: 10.2174/1381612826666200402102308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 02/01/2023]
Abstract
Carbon nanodots are zero-dimensional spherical allotropes of carbon and are less than 10nm in size (ranging from 2-8nm). Based on their biocompatibility, remarkable water solubility, eco- friendliness, conductivity, desirable optical properties and low toxicity, carbon dots have revolutionized the biomedical field. In addition, they have intrinsic photo-luminesce to facilitate bio-imaging, bio-sensing and theranostics. Carbon dots are also ideal for targeted drug delivery. Through functionalization of their surfaces for attachment of receptor-specific ligands, they ultimately result in improved drug efficacy and a decrease in side-effects. This feature may be ideal for effective chemo-, gene- and antibiotic-therapy. Carbon dots also comply with green chemistry principles with regard to their safe, rapid and eco-friendly synthesis. Carbon dots thus, have significantly enhanced drug delivery and exhibit much promise for future biomedical applications. The purpose of this review is to elucidate the various applications of carbon dots in biomedical fields. In doing so, this review highlights the synthesis, surface functionalization and applicability of biodegradable polymers for the synthesis of carbon dots. It further highlights a myriad of biodegradable, biocompatible and cost-effective polymers that can be utilized for the fabrication of carbon dots. The limitations of these polymers are illustrated as well. Additionally, this review discusses the application of carbon dots in theranostics, chemo-sensing and targeted drug delivery systems. This review also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life.
Collapse
Affiliation(s)
- Eemaan N Cohen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
11
|
Baluta S, Lesiak A, Cabaj J. Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. SENSORS 2020; 20:s20164567. [PMID: 32823962 PMCID: PMC7472078 DOI: 10.3390/s20164567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022]
Abstract
Although neurotransmitters are present in human serum at the nM level, any dysfunction of the catecholamines concentration may lead to numerous serious health problems. Due to this fact, rapid and sensitive catecholamines detection is extremely important in modern medicine. However, there is no device that would measure the concentration of these compounds in body fluids. The main goal of the present study is to design a simple as possible, cost-effective new biosensor-based system for the detection of neurotransmitters, using nontoxic reagents. The miniature Au-E biosensor was designed and constructed through the immobilization of tyrosinase on an electroactive layer of cysteamine and carbon nanoparticles covering the gold electrode. This sensing arrangement utilized the catalytic oxidation of norepinephrine (NE) to NE quinone, measured with voltammetric techniques: cyclic voltammetry and differential pulse voltammetry. The prepared bio-system exhibited good parameters: a broad linear range (1–200 μM), limit of detection equal to 196 nM, limit of quantification equal to 312 nM, and high selectivity and sensitivity. It is noteworthy that described method was successfully applied for NE determination in real samples.
Collapse
Affiliation(s)
- Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
- Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
- Correspondence: ; Tel.: +48-71-320-4641
| |
Collapse
|
12
|
Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces 2018; 170:347-354. [DOI: 10.1016/j.colsurfb.2018.06.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
13
|
Wen J, Sun S. Carbon Nanomaterials in Optical Detection. CARBON-BASED NANOMATERIALS IN ANALYTICAL CHEMISTRY 2018. [DOI: 10.1039/9781788012751-00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Owing to their unique optical, electronic, mechanical, and chemical properties, flexible chemical modification, large surface coverage and ready cellular uptake, various carbon nanomaterials such as carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs), graphene quantum dots, fullerenes, carbon nanohorns (CNHs) and carbon nano-onions (CNOs), have been widely explored for use in optical detection. Most of them are based on fluorescence changes. In this chapter, we will focus on carbon nanomaterials-based optical detection applications, mainly including fluorescence sensing and bio-imaging. Moreover, perspectives on future exploration of carbon nanomaterials for optical detection are also given.
Collapse
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| |
Collapse
|
14
|
Pandey S, Gedda GR, Thakur M, Bhaisare ML, Talib A, Khan MS, Wu SM, Wu HF. Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photo-chemotherapy and bioimaging of cancer. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:468-477. [PMID: 27287144 DOI: 10.1016/j.msec.2016.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
An economical green-chemistry approach was used for the synthesis of aqueous soluble graphene quantum dots (GQDs) from cow milk for simultaneous imaging and drug delivery in cancer. The GQDs synthesized using one-pot microwave-assisted heating were multi-fluorescent, spherical in shape having a lateral size of ca. 5nm. The role of processing parameters such as heating time and ionic strength showed a profound effect on photoluminescence properties of GQDs. The GQDs were N-doped and oxygen-rich as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Cysteamine hydrochloride (Cys) was used to attach an anti-cancer drug berberine hydrochloride (BHC) on GQDs forming GQDs@Cys-BHC complex with c.a. 88% drug loading efficiency. In vitro drug release was studied at the acidic-basic environment and drug kinetics was studied using pharmacokinetic statistical models. The GQDs were biocompatible on L929 cells whereas theranostic GQDs@Cys-BHC complex showed a potent cytotoxic effect on different cancerous cell line models: cervical cancer cell lines such as HeLa cells and breast cancer cells such as MDA-MB-231 confirmed by Trypan blue and MTT-based cytotoxic assays. Furthermore, multi-excitation based cellular bioimaging was demonstrated using confocal laser scanning microscopy (CLSM) and fluorescence microscopy using GQDs as well as GQDs@Cys-BHC complex. Thus, drug delivery (therapeutic) and bioimaging (diagnostic) properties of GQDs@Cys-BHC complex are thought to have a potential in vitro theranostic application in cancer therapy.
Collapse
|
16
|
Hu Q, Meng X, Choi MMF, Gong X, Chan W. Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry. Anal Chim Acta 2016; 911:100-107. [PMID: 26893091 DOI: 10.1016/j.aca.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 12/29/2022]
Abstract
A fast and accurate ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) method was developed for the separation and structural elucidation of fluorescent carbon nanoparticles (CNP). The CNP was synthesised from microwave-assisted pyrolysis of citric acid (CA) and 1,2-ethylenediamine (EDA). By using UPLC separation, the CNP product was well separated into ten fractions within 4.0 min. Based on high-accuracy MS and MS/MS analyses, the CNP species were revealed to display six kinds of chemical formulas, including (C10H20N4O5)n, (C8H12N2O5)n, (C16H22N4O9)n, (C6H8O7)n, (C14H18N2O11)n, and (C14H16N2O10)n. In particular, our study revealed for the first time that the CNP species exist as supramolecular clusters with their individual monomers units linked together through non-covalent bonding forces. These findings clearly indicated the usefulness of UPLC-ESI-Q-TOF-MS/MS in identifying the chemical composition of CNP product. It is anticipated that our proposed methodology can be applied to study the structure-property relationships of CNP, facilitating in the production of CNP with desirable spectral features.
Collapse
Affiliation(s)
- Qin Hu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Xiangpeng Meng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Martin M F Choi
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| | - Xiaojuan Gong
- Research Center of Environmental Science and Engineering, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
17
|
Kumar VB, Sheinberger J, Porat Z, Shav-Tal Y, Gedanken A. A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. J Mater Chem B 2016; 4:2913-2920. [DOI: 10.1039/c6tb00519e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current study, we present a new and facile synthesis of N doped C-dots (N@C-dots) by hydrothermally reacting an aqueous solution of Bovine Serum Albumin (BSA) for imaging of live mammalian cells.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology & Advanced Materials
- Bar Ilan University
- Ramat-Gan 52900
- Israel
| | - Jonathan Sheinberger
- Mina and Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Zeev Porat
- Division of Chemistry
- Nuclear Research Center-Negev
- Be'er-Sheva 84190
- Israel
- Institutes of Applied Research
| | - Yaron Shav-Tal
- Mina and Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Aharon Gedanken
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology & Advanced Materials
- Bar Ilan University
- Ramat-Gan 52900
- Israel
- Department of Materials Science & Engineering
| |
Collapse
|
18
|
Kumar VB, Tang J, Lee KJ, Pol VG, Gedanken A. In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries. RSC Adv 2016. [DOI: 10.1039/c6ra09926b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A facile sonochemical approach is employed for the in situ formation of Sn@C-dots via ultrasonic irradiation of polyethylene glycol (PEG) as a solvent with molten tin and its decomposition.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology & Advanced Materials
- Bar Ilan University
- Israel
| | - Jialiang Tang
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Kay Jangweon Lee
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Vilas G. Pol
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Aharon Gedanken
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology & Advanced Materials
- Bar Ilan University
- Israel
| |
Collapse
|
19
|
An X, Ma J, Wang K, Zhan M. Growth of silver nanowires on carbon fiber to produce hybrid/waterborne polyurethane composites with improved electrical properties. J Appl Polym Sci 2015. [DOI: 10.1002/app.43056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoyun An
- School of Materials Science and Engineering; Beihang University; Beijing 100191 People's Republic of China
| | - Jingjing Ma
- School of Materials Science and Engineering; Beihang University; Beijing 100191 People's Republic of China
| | - Kai Wang
- School of Materials Science and Engineering; Beihang University; Beijing 100191 People's Republic of China
| | - Maosheng Zhan
- School of Materials Science and Engineering; Beihang University; Beijing 100191 People's Republic of China
| |
Collapse
|
20
|
Controlled delivery of dopamine hydrochloride using surface modified carbon dots for neuro diseases. Colloids Surf B Biointerfaces 2015; 134:140-6. [DOI: 10.1016/j.colsurfb.2015.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
|
21
|
Wang H, Sun Y, Yi J, Fu J, Di J, del Carmen Alonso A, Zhou S. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials 2015; 53:117-26. [DOI: 10.1016/j.biomaterials.2015.02.087] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
|
22
|
Wen J, Xu Y, Li H, Lu A, Sun S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun (Camb) 2015; 51:11346-58. [DOI: 10.1039/c5cc02887f] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A review of recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.
Collapse
Affiliation(s)
- Jia Wen
- College of Science
- Northwest A&F University
- Yangling
- China
| | - Yongqian Xu
- College of Science
- Northwest A&F University
- Yangling
- China
| | - Hongjuan Li
- College of Science
- Northwest A&F University
- Yangling
- China
| | - Aiping Lu
- School of Chinese Medicine
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Shiguo Sun
- College of Science
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
23
|
Thakur M, Pandey S, Mewada A, Patil V, Khade M, Goshi E, Sharon M. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. JOURNAL OF DRUG DELIVERY 2014; 2014:282193. [PMID: 24744921 PMCID: PMC3976943 DOI: 10.1155/2014/282193] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022]
Abstract
A novel report on microwave assisted synthesis of bright carbon dots (C-dots) using gum arabic (GA) and its use as molecular vehicle to ferry ciprofloxacin hydrochloride, a broad spectrum antibiotic, is reported in the present work. Density gradient centrifugation (DGC) was used to separate different types of C-dots. After careful analysis of the fractions obtained after centrifugation, ciprofloxacin was attached to synthesize ciprofloxacin conjugated with C-dots (Cipro @ C-dots conjugate). Release of ciprofloxacin was found to be extremely regulated under physiological conditions. Cipro @ C-dots were found to be biocompatible on Vero cells as compared to free ciprofloxacin (1.2 mM) even at very high concentrations. Bare C-dots ( ∼ 13 mg mL(-1)) were used for microbial imaging of the simplest eukaryotic model-Saccharomyces cerevisiae (yeast). Bright green fluorescent was obtained when live imaging was performed to view yeast cells under fluorescent microscope suggesting C-dots incorporation inside the cells. Cipro @ C-dots conjugate also showed enhanced antimicrobial activity against both model gram positive and gram negative microorganisms. Thus, the Cipro @ C-dots conjugate paves not only a way for bioimaging but also an efficient new nanocarrier for controlled drug release with high antimicrobial activity, thereby serving potential tool for theranostics.
Collapse
Affiliation(s)
- Mukeshchand Thakur
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| | - Sunil Pandey
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| | - Ashmi Mewada
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| | - Vaibhav Patil
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| | - Monika Khade
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| | - Ekta Goshi
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| | - Madhuri Sharon
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, Maharashtra 421505, India
| |
Collapse
|
24
|
Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B 2013; 2:698-705. [PMID: 32261288 DOI: 10.1039/c3tb21436b] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon dots (C-dots) are one of the most highlighted carbon-based materials for biological applications such as delivery of therapeutic payloads for cancer treatment mainly due to their biocompatibility and unique optical properties. In this work, we have explored the drug carrying capacity of highly fluorescent sorbitol-derived C-dots for targeted delivery of doxorubicin (DOX). We have used folic acid (FA) as a navigational molecule due to its high expression in most cancer cells. Before attachment of the DOX, the surfaces of the C-dots were protected with bovine serum albumin (BSA) to make them more biocompatible and able to hold a high amount of drugs. The release profile of DOX was studied using standard statistical models and confirmed to be first order at pH 7.2. Cellular imaging was performed using epifluorescence microscopy, which showed bright green coloured fluorescence due to internalization of C-dots specifically targeted with FA in HeLa cells.
Collapse
Affiliation(s)
- Ashmi Mewada
- N.S.N. Research Center for Nanotechnology and Bionanotechnology, Ambernath, India.
| | | | | | | | | |
Collapse
|