Orienti I, Cripe TP, Currier MA, Cavallari C, Teti G, Falconi M. A Cationic Nanomicellar Complex of the Quaternary Amphiphilic Amine RC16+ with Fenretinide as a New Multitasking System for Antitumor Therapy.
Curr Drug Deliv 2020;
16:807-817. [PMID:
31577206 DOI:
10.2174/1567201816666191002100745]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/27/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES
This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity.
METHODS
The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide.
RESULTS
All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy.
CONCLUSION
Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.
Collapse