1
|
Cavender CE, Case DA, Chen JCH, Chong LT, Keedy DA, Lindorff-Larsen K, Mobley DL, Ollila OHS, Oostenbrink C, Robustelli P, Voelz VA, Wall ME, Wych DC, Gilson MK. Structure-Based Experimental Datasets for Benchmarking Protein Simulation Force Fields [Article v0.1]. ARXIV 2025:arXiv:2303.11056v2. [PMID: 40196146 PMCID: PMC11975311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This review article provides an overview of structurally oriented experimental datasets that can be used to benchmark protein force fields, focusing on data generated by nuclear magnetic resonance (NMR) spectroscopy and room temperature (RT) protein crystallography. We discuss what the observables are, what they tell us about structure and dynamics, what makes them useful for assessing force field accuracy, and how they can be connected to molecular dynamics simulations carried out using the force field one wishes to benchmark. We also touch on statistical issues that arise when comparing simulations with experiment. We hope this article will be particularly useful to computational researchers and trainees who develop, benchmark, or use protein force fields for molecular simulations.
Collapse
Affiliation(s)
- Chapin E. Cavender
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - David A. Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Julian C.-H. Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA; PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, NY, USA
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - O. H. Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland; VTT Technical Research Centre of Finland, Espoo, Finland
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Robustelli
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA; The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA; The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Harmon TW, Lin Y, Sutton RT, Osborne SWJ, Seth Horne W. Interplay between C α Methylation and C α Stereochemistry in the Folding Energetics of a Helix-Rich Miniprotein. Chembiochem 2025; 26:e202401022. [PMID: 39791987 PMCID: PMC11907383 DOI: 10.1002/cbic.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
The α-helix is an abundant and functionally important element of protein secondary structure, which has motivated intensive efforts toward chemical strategies to stabilize helical folds. One such method is the incorporation of non-canonical backbone composition through an additional methyl substituent at the Cα atom. Examples of monomers include the achiral 2-aminoisobutyric acid (Aib) with geminal dimethyl substitution and chiral analogues with one methyl and one non-methyl substituent. While Aib and chiral Cα-Me residues are both established helix promoting moieties, their comparative ability in this regard has not been quantitatively investigated. Addressing this gap would help to inform the use of these building blocks in the construction of peptide and protein mimetics as well as provide fundamental insights into consequences of backbone methylation on folding. Here, we report a quantitative comparison of the impacts of Aib and chiral αMe residues on the high-resolution folded structure and folding thermodynamics of a small helical protein. These results reveal a synergistic stabilizing effect arising from the presence of Cα methylation in conjunction with a Cα stereocenter.
Collapse
Affiliation(s)
- Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yuhan Lin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ryen T Sutton
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shane W J Osborne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Abstract
The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.
Collapse
|
4
|
Bò L, Milanetti E, Chen CG, Ruocco G, Amadei A, D’Abramo M. Computational Modeling of the Thermodynamics of the Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein. ACS OMEGA 2022; 7:13448-13454. [PMID: 35559192 PMCID: PMC9088802 DOI: 10.1021/acsomega.1c06206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
We characterize the folding-unfolding thermodynamics of two mutants of the miniprotein Trp-cage by combining extended molecular dynamics simulations and an advanced statistical-mechanical-based approach. From a set of molecular dynamics simulations in an explicit solvent performed along a reference isobar, we evaluated the structural and thermodynamic behaviors of a mesophilic and a thermophilic mutant of the Trp-cage and their temperature dependence. In the case of the thermophilic mutant, computational data confirm that our theoretical-computational approach is able to reproduce the available experimental estimate with rather good accuracy. On the other hand, the mesophilic mutant does not show a clear two-state (folded and unfolded) behavior, preventing us from reconstructing its thermodynamics; thus, an analysis of its structural behavior along a reference isobar is presented. Our results show that an extended sampling of these kinds of systems coupled to an advanced statistical-mechanical-based treatment of the data can provide an accurate description of the folding-unfolding thermodynamics along a reference isobar, rationalizing the discrepancies between the simulated and experimental systems.
Collapse
Affiliation(s)
- Leonardo Bò
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center
for Life Nano & Neuroscience, Italian
Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Cheng Giuseppe Chen
- Department
of Chemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Ruocco
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center
for Life Nano & Neuroscience, Italian
Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Andrea Amadei
- Department
of Chemical Sciences and Technology, Universitá
degli Studi di Roma Tor Vergata, Via della ricerca scientifica 00133 Rome, Italy
| | - Marco D’Abramo
- Department
of Chemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Graham KA, Byrne A, Mason M, Andersen NH. Optimizing the fold stability of the circularly permuted Trp-cage motif. Biopolymers 2019; 110:e23327. [PMID: 31479150 DOI: 10.1002/bip.23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/09/2022]
Abstract
Through optimization of the linker region and key stabilizing mutations, it has been possible to improve the stability of the circularly permuted (cp) Trp-cage miniprotein. However, even the most stable Trp-cage circular permutants are still less stable than the analogous standard topology (std) Trp-cages. Extending mutational studies of Trp-cage fold stability to cp-species, including analogs lacking chain terminal charges, has uncovered and quantitated some additional stabilizing and destabilizing interactions. Upon protonation, the circular permutants are destabilized to a much greater extent than the standard topology series. End effects, particularly Coulombic interactions, appear to be more important for the cp-series while the Y10/P4 interaction in the cp-series is not as significant a stabilizing feature as the corresponding Y3/P19 in the standard topology series.
Collapse
Affiliation(s)
- Katherine A Graham
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Micheal Mason
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Graham KA, Byrne A, Son R, Andersen NH. Reversing the typical pH stability profile of the Trp-cage. Biopolymers 2019; 110:e23260. [PMID: 30779444 DOI: 10.1002/bip.23260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The Trp-cage, an 18-20 residue miniprotein, has emerged as a primary test system for evaluating computational fold prediction and folding rate determination efforts. As it turns out, a number of stabilizing interactions in the Trp-cage folded state have a strong pH dependence; all prior Trp-cage mutants have been destabilized under carboxylate-protonating conditions. Notable among the pH dependent stabilizing interactions within the Trp-cage are: (1) an Asp as the helix N-cap, (2) an H-bonded Asp9/Arg16 salt bridge, (3) an interaction between the chain termini which are in close spatial proximity, and (4) additional side chain interactions with Asp9. In the present study, we have prepared Trp-cage species that are significantly more stable at pH 2.5 (rather than 7) and quantitated the contribution of each interaction listed above. The Trp-cage structure remains constant with the pH change. The study has also provided measures of the stabilizing contribution of indole ring shielding from surface exposure and the destabilizing effects of an ionized Asp at the C-terminus of an α-helix.
Collapse
Affiliation(s)
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Ruth Son
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Comput Struct Biotechnol J 2019; 17:263-281. [PMID: 30867891 PMCID: PMC6396041 DOI: 10.1016/j.csbj.2019.01.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Protein-protein interaction (PPI) is a hot topic in clinical research as protein networking has a major impact in human disease. Such PPIs are potential drugs targets, leading to the need to inhibit/block specific PPIs. While small molecule inhibitors have had some success and reached clinical trials, they have generally failed to address the flat and large nature of PPI surfaces. As a result, larger biologics were developed for PPI surfaces and they have successfully targeted PPIs located outside the cell. However, biologics have low bioavailability and cannot reach intracellular targets. A novel class -hydrocarbon-stapled α-helical peptides that are synthetic mini-proteins locked into their bioactive structure through site-specific introduction of a chemical linker- has shown promise. Stapled peptides show an ability to inhibit intracellular PPIs that previously have been intractable with traditional small molecule or biologics, suggesting that they offer a novel therapeutic modality. In this review, we highlight what stapling adds to natural-mimicking peptides, describe the revolution of synthetic chemistry techniques and how current drug discovery approaches have been adapted to stabilize active peptide conformations, including ring-closing metathesis (RCM), lactamisation, cycloadditions and reversible reactions. We provide an overview on the available stapled peptide high-resolution structures in the protein data bank, with four selected structures discussed in details due to remarkable interactions of their staple with the target surface. We believe that stapled peptides are promising drug candidates and open the doors for peptide therapeutics to reach currently "undruggable" space.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan1, 9700AD Groningen, the Netherlands
| |
Collapse
|
8
|
Anderson JM, Kier BL, Jurban B, Byrne A, Shu I, Eidenschink LA, Shcherbakov AA, Hudson M, Fesinmeyer RM, Andersen NH. Aryl-aryl interactions in designed peptide folds: Spectroscopic characteristics and optimal placement for structure stabilization. Biopolymers 2016; 105:337-356. [PMID: 26850220 PMCID: PMC5638712 DOI: 10.1002/bip.22821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Abstract
We have extended our studies of Trp/Trp to other Aryl/Aryl through-space interactions that stabilize hairpins and other small polypeptide folds. Herein we detail the NMR and CD spectroscopic features of these types of interactions. NMR data remains the best diagnostic for characterizing the common T-shape orientation. Designated as an edge-to-face (EtF or FtE) interaction, large ring current shifts are produced at the edge aryl ring hydrogens and, in most cases, large exciton couplets appear in the far UV circular dichroic (CD) spectrum. The preference for the face aryl in FtE clusters is W ≫ Y ≥ F (there are some exceptions in the Y/F order); this sequence corresponds to the order of fold stability enhancement and always predicts the amplitude of the lower energy feature of the exciton couplet in the CD spectrum. The CD spectra for FtE W/W, W/Y, Y/W, and Y/Y pairs all include an intense feature at 225-232 nm. An additional couplet feature seen for W/Y, W/F, Y/Y, and F/Y clusters, is a negative feature at 197-200 nm. Tyr/Tyr (as well as F/Y and F/F) interactions produce much smaller exciton couplet amplitudes. The Trp-cage fold was employed to search for the CD effects of other Trp/Trp and Trp/Tyr cluster geometries: several were identified. In this account, we provide additional examples of the application of cross-strand aryl/aryl clusters for the design of stable β-sheet models and a scale of fold stability increments associated with all possible FtE Ar/Ar clusters in several structural contexts. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 337-356, 2016.
Collapse
Affiliation(s)
- Jordan M Anderson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Brandon L Kier
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Brice Jurban
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Irene Shu
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | | | - Mike Hudson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - R M Fesinmeyer
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| |
Collapse
|
9
|
Abaskharon RM, Culik RM, Woolley GA, Gai F. Tuning the Attempt Frequency of Protein Folding Dynamics via Transition-State Rigidification: Application to Trp-Cage. J Phys Chem Lett 2015; 6:521-6. [PMID: 26120378 PMCID: PMC4479204 DOI: 10.1021/jz502654q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 05/23/2023]
Abstract
The attempt frequency or prefactor (k0) of the transition-state rate equation of protein folding kinetics has been estimated to be on the order of 10(6) s(-1), which is many orders of magnitude smaller than that of chemical reactions. Herein we use the mini-protein Trp-cage to show that it is possible to significantly increase the value of k0 for a protein folding reaction by rigidifying the transition state. This is achieved by reducing the conformational flexibility of a key structural element (i.e., an α-helix) formed in the transition state via photoisomerization of an azobenzene cross-linker. We find that this strategy not only decreases the folding time of the Trp-cage peptide by more than an order of magnitude (to ∼100 ns at 25°C) but also exposes parallel folding pathways, allowing us to provide, to the best of our knowledge, the first quantitative assessment of the curvature of the transition-state free-energy surface of a protein.
Collapse
Affiliation(s)
- Rachel M. Abaskharon
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| | - Robert M. Culik
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| | - G. Andrew Woolley
- Department of Chemistry, University of
Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Feng Gai
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
10
|
Markiewicz BN, Culik RM, Gai F. Tightening up the structure, lighting up the pathway: Application of molecular constraints and light to manipulate protein folding, self-assembly and function. Sci China Chem 2014; 57:1615-1624. [PMID: 25722715 PMCID: PMC4337807 DOI: 10.1007/s11426-014-5225-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins. Recently, other types of molecular constraints, especially photoresponsive linkers and functional groups, have also found increased use in a wide variety of applications. Herein, we provide a concise review of using various forms of molecular strategies to constrain proteins, thereby stabilizing their native states, gaining insight into their folding mechanisms, and/or providing a handle to trigger a conformational process of interest with light. The applications discussed here cover a wide range of topics, ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.
Collapse
Affiliation(s)
| | - Robert M. Culik
- Department of Biochemistry and Biophysics, University of Pennsylvania, PA, 19104, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, PA, 19104, USA
| |
Collapse
|
11
|
Byrne A, Williams DV, Barua B, Hagen SJ, Kier BL, Andersen NH. Folding dynamics and pathways of the trp-cage miniproteins. Biochemistry 2014; 53:6011-21. [PMID: 25184759 PMCID: PMC4179588 DOI: 10.1021/bi501021r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Using alternate measures of fold stability for a wide variety of Trp-cage mutants has raised the possibility that prior dynamics T-jump measures may not be reporting on complete cage formation for some species. NMR relaxation studies using probes that only achieve large chemical shift difference from unfolded values on complete cage formation indicate slower folding in some but not all cases. Fourteen species have been examined, with cage formation time constants (1/kF) ranging from 0.9-7.5 μs at 300 K. The present study does not change the status of the Trp-cage as a fast folding, essentially two-state system, although it does alter the stage at which this description applies. A diversity of prestructuring events, depending on the specific analogue examined, may appear in the folding scenario, but in all cases, formation of the N-terminal helix is complete either at or before the cage-formation transition state. In contrast, the fold-stabilizing H-bonding interactions of the buried Ser14 side chain and the Arg/Asp salt bridge are post-transition state features on the folding pathway. The study has also found instances in which a [P12W] mutation is fold destabilizing but still serves to accelerate the folding process.
Collapse
Affiliation(s)
- Aimee Byrne
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | | | | | | |
Collapse
|
12
|
Kier BL, Anderson JM, Andersen NH. Circular permutation of a WW domain: folding still occurs after excising the turn of the folding-nucleating hairpin. J Am Chem Soc 2014; 136:741-9. [PMID: 24350581 PMCID: PMC4051316 DOI: 10.1021/ja410824x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state.
Collapse
Affiliation(s)
- Brandon L. Kier
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | - Niels H. Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|