1
|
Caceres-Cortes J, Falk B, Mueller L, Dhar TGM. Perspectives on Nuclear Magnetic Resonance Spectroscopy in Drug Discovery Research. J Med Chem 2024; 67:1701-1733. [PMID: 38290426 DOI: 10.1021/acs.jmedchem.3c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation. We will discuss innovations in NMR spectroscopy at the chemistry and biology interface that have broadened NMR's utility from hit identification through lead optimization activities. We will also discuss the promise of emerging NMR approaches in bridging our understanding and addressing challenges in the pursuit of the therapeutic agents of the future.
Collapse
Affiliation(s)
- Janet Caceres-Cortes
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Bradley Falk
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Luciano Mueller
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Discovery Chemistry, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 085401, United States
| |
Collapse
|
2
|
Mycroft C, Smith MJ, Nilsson M, Morris GA, Castañar L. Pure shift FESTA: An ultra-high resolution NMR tool for the analysis of complex fluorine-containing spin systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:606-614. [PMID: 37688573 DOI: 10.1002/mrc.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
NMR measurements of molecules containing sparse fluorine atoms are becoming increasingly common due to their prevalence in medicinal chemistry. However, the presence of both homonuclear and heteronuclear scalar couplings severely complicates their analysis by NMR. In complex systems, FESTA, a heteronuclear spectral editing method, allows simplified 1 H NMR spectra to be obtained containing only 1 H signals from the same spin system as a chosen 19 F. Despite spectral simplification, signal overlap due to the presence of scalar couplings is often a problem in FESTA spectra. Here, we report a new experiment that combines FESTA and pure shift methods to provide fully decoupled ultra-high resolution FESTA spectra showing a single signal for each 1 H chemical environment. The utility of the method is demonstrated for the analysis of two complex fluorine-containing mixtures of pharmaceutical and biochemical interest.
Collapse
Affiliation(s)
- Coral Mycroft
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Marshall J Smith
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Manchester, UK
- Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Mycroft C, Dal Poggetto G, Barbosa TM, Tormena C, Nilsson M, Morris GA, Castañar L. Rapid Measurement of Heteronuclear Coupling Constants in Complex NMR Spectra. J Am Chem Soc 2023; 145:19824-19831. [PMID: 37650656 PMCID: PMC10510310 DOI: 10.1021/jacs.3c05515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 09/01/2023]
Abstract
The NMR analysis of fluorine-containing molecules, increasingly widespread due to their importance in pharmaceuticals and biochemistry, poses significant challenges. Severe peak overlap in the proton spectrum often hinders the extraction of critical structural information in the form of heteronuclear scalar coupling constants, which are crucial for determining pharmaceutical properties and biological activity. Here, a new method, IPAP-FESTA, is reported that drastically simplifies measurements of the signs and magnitudes of proton-fluorine couplings. Its usefulness is demonstrated for the structural study of the steroidal drug fluticasone propionate extracted from a commercial formulation and for assessing solvent effects on the conformational equilibrium in a physically inseparable fluorohydrin mixture.
Collapse
Affiliation(s)
- Coral Mycroft
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United
Kingdom
| | - Guilherme Dal Poggetto
- Chemistry
Institute, University of Campinas −
UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
- Analytical
Research & Development, Merck &
Co., Inc., 126 Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Thaís M. Barbosa
- Chemistry
Institute, University of Campinas −
UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
- Nanalysis
Corp., 1-4600 5 Street NE, Calgary, Alberta, Canada T2E 7C3
| | - Cláudio
F. Tormena
- Chemistry
Institute, University of Campinas −
UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Mathias Nilsson
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gareth A. Morris
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Laura Castañar
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Mishra SK, Suryaprakash N. Pure shift edited NMR methodologies for the extraction of Homo- and heteronuclear couplings with ultra-high resolution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 136-137:1-60. [PMID: 37716754 DOI: 10.1016/j.pnmrs.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 09/18/2023]
Abstract
The scalar couplings that result in the splitting of the signals in the NMR spectrum arise due to the interaction of the nuclear spins, whereby the spin polarization is transmitted through chemical bonds. The interaction strengths depend inter alia on the number of consecutive chemical bonds intervening between the two interacting spins and on the molecular conformation. The pairwise interaction of many spins in a molecule resulting in a complex spectrum poses a severe challenge to analyse the spectrum and hence the determination of magnitudes and signs of homo- and heteronuclear couplings. The problem is more severe in the analysis of 1H spectra than the spectra of most of the other nuclei due to the often very small chemical shift dispersion. As a consequence, the straightforward analysis and the accurate extraction of the coupling constants from the 1H spectrum of a complex spin system continues to remain a challenge, and often may be a formidable task. Over the years, the several pure shift-based one-dimensional and two-dimensional methodologies have been developed by workers in the field, which provide broadband homonuclear decoupling of proton spectra, removing the complexity but at the cost of the very informative scalar couplings. To circumvent this problem, several one-dimensional and two-dimensional NMR experiments have been developed for the determination of homonuclear and heteronuclear couplings (nJHX, where n = 1,2,3) while retaining the high resolution obtained by implementing pure shift strategies. This review attempts to summarize the extensive work reported by a large number of researchers over the years for the accurate determination of homo- and heteronuclear scalar couplings.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Department of Physics and NMR Research Centre, Indian Institute of Science Education and Research, Pune 411008, India.
| | - N Suryaprakash
- NMR Research Centre and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Mycroft C, Nilsson M, Morris GA, Castañar L. Simultaneous Broadband Suppression of Homonuclear and Heteronuclear Couplings in 1 H NMR Spectroscopy. Chemphyschem 2022; 23:e202200495. [PMID: 35994208 PMCID: PMC10099583 DOI: 10.1002/cphc.202200495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Indexed: 01/05/2023]
Abstract
The 1 H NMR analysis of species containing NMR-active heteronuclei can be difficult due to signal overlap caused by the combined effects of homonuclear and heteronuclear scalar (J) couplings. Here, a general pure shift method is presented for obtaining ultra-high resolution 1 H NMR spectra where spectral overlap is drastically reduced by suppressing both homonuclear and heteronuclear J-couplings, giving one single signal per 1 H chemical environment. Its usefulness is demonstrated in the analysis of fluorine- and phosphorus-containing compounds of pharmaceutical and biochemical interest.
Collapse
Affiliation(s)
- Coral Mycroft
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gareth A Morris
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Laura Castañar
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
6
|
Timári I, Bagi P, Keglevich G, E. Kövér K. Ultrahigh-Resolution Homo- and Heterodecoupled 1H and TOCSY NMR Experiments. ACS OMEGA 2022; 7:43283-43289. [PMID: 36467931 PMCID: PMC9713892 DOI: 10.1021/acsomega.2c06102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The original homonuclear decoupled (pure shift) experiments provide ultrahigh-resolution 1H spectra of compounds containing NMR-active heteronuclei of low natural isotopic abundance (e.g., 13C or 15N). In contrast, molecules containing highly abundant heteronuclei (like 31P or 19F) give doublets or a multiple of doublets in their homonuclear decoupled spectra, depending on the number of heteronuclear coupling partners and the magnitude of the respective coupling constants. In these cases, the complex and frequently overlapping signals may hamper the unambiguous assignment of resonances. Here, we present new heteronuclear decoupled (HD) PSYCHE 1H and TOCSY experiments, which result in simplified spectra with significantly increased resolution, allowing the reliable assessment of individual resonances. The utility of the experiments has been demonstrated on a challenging stereoisomeric mixture of a platinum-phosphine complex, where ultrahigh resolution of the obtained HD PSYCHE spectra made the structure elucidation of the chiral products feasible. HD PSYCHE methods can be potentially applied to other important 31P- or 19F-containing compounds in medicinal chemistry and metabolomics.
Collapse
Affiliation(s)
- István Timári
- Department
of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Péter Bagi
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - György Keglevich
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Katalin E. Kövér
- Department
of Inorganic and Analytical Chemistry, University
of Debrecen, Egyetem
tér 1, H-4032 Debrecen, Hungary
- ELKH-DE
Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Pure shift NMR and DFT methods for revealing long-range heteronuclear couplings. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Eikemo V, Holmelid B, Sydnes LK, Sydnes MO. Photodegradable Antimicrobial Agents: Synthesis and Mechanism of Degradation. J Org Chem 2022; 87:8034-8047. [PMID: 35653169 PMCID: PMC9207920 DOI: 10.1021/acs.joc.2c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
As a strategy to
inactivate antimicrobial agents after use, we
designed a range of ethanolamine derivatives where four of them possessed
interesting activity. The ethanolamine moiety facilitates photodecomposition,
which in a potential drug will take place after use. Herein, the synthetic
preparation of these compounds and the mechanism of photoinactivation
are described.
Collapse
Affiliation(s)
- Vebjørn Eikemo
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger NO-4036, Norway
| | - Bjarte Holmelid
- Department of Chemistry, University of Bergen, Bergen NO-5007, Norway
| | - Leiv K Sydnes
- Department of Chemistry, University of Bergen, Bergen NO-5007, Norway
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger NO-4036, Norway
| |
Collapse
|
9
|
Dal Poggetto G, Soares JV, Tormena CF. Selective Nuclear Magnetic Resonance Experiments for Sign-Sensitive Determination of Heteronuclear Couplings: Expanding the Analysis of Crude Reaction Mixtures. Anal Chem 2020; 92:14047-14053. [PMID: 32924438 PMCID: PMC7660590 DOI: 10.1021/acs.analchem.0c02976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
State-of-the-art nuclear magnetic resonance (NMR) selective experiments are capable of directly analyzing crude reaction mixtures. A new experiment named HD-HAPPY-FESTA yields ultrahigh-resolution total correlation subspectra, which are suitable for sign-sensitive determination of heteronuclear couplings, as demonstrated here by measuring the sign and magnitude for proton-fluorine couplings (JHF) from major and minor isomer products of a two-step reaction without any purification. Proton-fluorine couplings ranging from 51.5 to -2.6 Hz could be measured using HD-HAPPY-FESTA, with the smallest measured magnitude of 0.8 Hz. Experimental JHF values were used to identify the two fluoroketone intermediates and the four fluoroalcohol products. Results were rationalized and compared with the density functional theory (DFT) calculations. Experimental data were further compared with the couplings reported in the literature, where pure samples were analyzed.
Collapse
Affiliation(s)
- Guilherme Dal Poggetto
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - João Vitor Soares
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| |
Collapse
|
10
|
Lin Y, Zeng Q, Lin L, Chen Z, Barker PB. High-resolution methods for the measurement of scalar coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:135-159. [PMID: 30527134 DOI: 10.1016/j.pnmrs.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 06/09/2023]
Abstract
Scalar couplings provide important information regarding molecular structure and dynamics. The measurement of scalar coupling constants constitutes a topic of interest and significance in NMR spectroscopy. However, the measurement of J values is often not straightforward because of complex signal splitting patterns and signal overlap. Many methods have been proposed for the measurement of scalar coupling constants, both for homonuclear and heteronuclear cases. Different approaches to the measurement of scalar coupling constants are reviewed here with several applications presented. The accurate measurement of scalar coupling constants can greatly facilitate molecular structure elucidation and the study of molecule dynamics.
Collapse
Affiliation(s)
- Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangjie Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Kakita VMR, Rachineni K, Hosur RV. Fast and simultaneous determination of 1 H- 1 H and 1 H- 19 F scalar couplings in complex spin systems: Application of PSYCHE homonuclear broadband decoupling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1043-1046. [PMID: 28731512 DOI: 10.1002/mrc.4635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The present manuscript focuses on fast and simultaneous determination of 1 H-1 H and 1 H-19 F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses 1 H-1 H scalar couplings; however, it retains 1 H-19 F scalar couplings (along F1 dimension) for the 19 F coupled protons while preserving the pure-shift nature for 1 H resonances uncoupled to 19 F. In such cases, along the direct dimensions, 1 H-1 H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the 19 F coupled protons, which facilitates unambiguous discrimination of 19 F coupled 1 H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
| | - Kavitha Rachineni
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santa Cruz, Mumbai, 400 098, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1-Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| |
Collapse
|
12
|
Rosenau CP, Jelier BJ, Gossert AD, Togni A. Fluor-NMR-Spektroskopie rekalibriert. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carl Philipp Rosenau
- Department Chemie und Angewandte Biowissenschaften; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Benson J. Jelier
- Department Chemie und Angewandte Biowissenschaften; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Alvar D. Gossert
- Biomolecular NMR Spectroscopy Platform, Department Biologie; Eidgenössische Technische Hochschule Zürich; Hönggerbergring 64 8093 Zürich Schweiz
| | - Antonio Togni
- Department Chemie und Angewandte Biowissenschaften; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
13
|
Rosenau CP, Jelier BJ, Gossert AD, Togni A. Exposing the Origins of Irreproducibility in Fluorine NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:9528-9533. [PMID: 29663671 DOI: 10.1002/anie.201802620] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 01/07/2023]
Abstract
Fluorine chemistry has taken a pivotal role in chemical reaction discovery, drug development, and chemical biology. NMR spectroscopy, arguably the most important technique for the characterization of fluorinated compounds, is rife with highly inconsistent referencing of fluorine NMR chemical shifts, producing deviations larger than 1 ppm. Herein, we provide unprecedented evidence that both spectrometer design and the current unified scale system underpinning the calibration of heteronuclear NMR spectra have unintentionally led to widespread variation in the standardization of 19 F NMR spectral data. We demonstrate that internal referencing provides the most robust, practical, and reproducible method whereby chemical shifts can be consistently measured and confirmed between institutions to less than 30 ppb deviation. Finally, we provide a comprehensive table of appropriately calibrated chemical shifts of reference compounds that will serve to calibrate 19 F spectra correctly.
Collapse
Affiliation(s)
- Carl Philipp Rosenau
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Benson J Jelier
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Alvar D Gossert
- Biomolecular NMR Spectroscopy Platform, Department of Biology, Swiss Federal Institute of Technology, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
14
|
Barbosa TM, Morris GA, Nilsson M, Rittner R, Tormena CF. 1H and 19F NMR in drug stress testing: the case of voriconazole. RSC Adv 2017. [DOI: 10.1039/c7ra03822d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stress tests form an important part of drug development, and of subsequent accreditation.
Collapse
Affiliation(s)
- T. M. Barbosa
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
- Chemistry Institute
| | - G. A. Morris
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - M. Nilsson
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - R. Rittner
- Chemistry Institute
- University of Campinas – UNICAMP
- 13083-970 – Campinas
- Brazil
| | - C. F. Tormena
- Chemistry Institute
- University of Campinas – UNICAMP
- 13083-970 – Campinas
- Brazil
| |
Collapse
|
15
|
Furgal JC, Goodson III T, Laine RM. D
5h [PhSiO1.5]10 synthesis via F− catalyzed rearrangement of [PhSiO1.5]n. An experimental/computational analysis of likely reaction pathways. Dalton Trans 2016; 45:1025-39. [DOI: 10.1039/c5dt04182a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluoride catalyzed rearrangement of PhSiO1.5 favoring [PhSiO1.5]10.
Collapse
Affiliation(s)
| | - Theodore Goodson III
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
- Macromolecular Science and Engineering Center
| | - Richard M. Laine
- Macromolecular Science and Engineering Center
- University of Michigan
- Ann Arbor
- USA
- Department of Materials Sci. and Eng
| |
Collapse
|
16
|
Lokesh N, Sachin S, Mishra SK, Suryaprakash N. Quick measurement of 1H–19F scalar couplings from the complex NMR spectra by real-time spin edition. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Castañar L, Parella T. Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:399-426. [PMID: 25899911 DOI: 10.1002/mrc.4238] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
In recent years, a great interest in the development of new broadband 1H homonuclear decoupled techniques providing simplified JHH multiplet patterns has emerged again in the field of small molecule NMR. The resulting highly resolved 1H NMR spectra display resonances as collapsed singlets, therefore minimizing signal overlap and expediting spectral analysis. This review aims at presenting the most recent advances in pure shift NMR spectroscopy, with a particular emphasis to the Zangger-Sterk experiment. A detailed discussion about the most relevant practical aspects in terms of pulse sequence design, selectivity, sensitivity, spectral resolution and performance is provided. Finally, the implementation of the different reported strategies into traditional 1D and 2D NMR experiments is described while several practical applications are also reviewed.
Collapse
Affiliation(s)
- Laura Castañar
- Servei de Ressonància Magnètica Nuclear and Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear and Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Aguilar JA, Cassani J, Delbianco M, Adams RW, Nilsson M, Morris GA. Minimising Research Bottlenecks by Decluttering NMR Spectra. Chemistry 2015; 21:6623-30. [DOI: 10.1002/chem.201406283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Indexed: 11/11/2022]
|
19
|
Timári I, Illyés TZ, Adams RW, Nilsson M, Szilágyi L, Morris GA, Kövér KE. Precise measurement of long-range heteronuclear coupling constants by a novel broadband proton-proton-decoupled CPMG-HSQMBC method. Chemistry 2015; 21:3472-9. [PMID: 25573660 PMCID: PMC4338765 DOI: 10.1002/chem.201405535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/17/2022]
Abstract
A broadband proton–proton-decoupled CPMG-HSQMBC method for the precise and direct measurement of long-range heteronuclear coupling constants is presented. The Zangger–Sterk-based homodecoupling scheme reported herein efficiently removes unwanted proton–proton splittings from the heteronuclear multiplets, so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between singlet maxima in the resulting spectra. The proposed pseudo-1D/2D pulse sequences were tested on nucleotides, a metal complex incorporating P heterocycles, and diglycosyl (di)selenides, as well as on other carbohydrate derivatives, for the extraction of nJ(1H,31P), nJ(1H,77Se), and nJ(1H,13C) values, respectively.
Collapse
Affiliation(s)
- István Timári
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen (Hungary)
| | | | | | | | | | | | | |
Collapse
|
20
|
Marcó N, Fredi A, Parella T. Ultra high-resolution HSQC: application to the efficient and accurate measurement of heteronuclear coupling constants. Chem Commun (Camb) 2015; 51:3262-5. [DOI: 10.1039/c4cc10279g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid acquisition strategy in terms of enhanced resolution per time unit for the simple and efficient determination of multiple coupling constants is proposed. The use of 13C spectral aliasing combined with pure shift NMR techniques allows accurate measurements of the magnitude and the sign from ultra high resolved 2D cross-peaks.
Collapse
Affiliation(s)
- Núria Marcó
- Servei de Ressonància Magnètica Nuclear
- Universitat Autònoma de Barcelona
- E-08193 Bellaterra
- Spain
| | - André Fredi
- Servei de Ressonància Magnètica Nuclear
- Universitat Autònoma de Barcelona
- E-08193 Bellaterra
- Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear
- Universitat Autònoma de Barcelona
- E-08193 Bellaterra
- Spain
| |
Collapse
|
21
|
Chaudhari SR, Suryaprakash N. Pure shift NMR approach for fast and accurate extraction of heteronuclear couplings. RSC Adv 2014. [DOI: 10.1039/c4ra01436g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An NMR experiment for the direct determination of heteronuclear couplings from the severely overlapped 1H NMR spectrum.
Collapse
Affiliation(s)
- Sachin Rama Chaudhari
- NMR Research Centre
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012, India
| | - N. Suryaprakash
- NMR Research Centre
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012, India
| |
Collapse
|