Dinda TK, Mal P. A Self-Sustaining Supramolecular (Auto)Photocatalysis via the Synthesis of N-Vinylacetamides.
Chemistry 2025;
31:e202404624. [PMID:
40192180 DOI:
10.1002/chem.202404624]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Efforts to enhance photocatalysts prioritize improving their accessibility and practicality in photocatalytic applications. Supramolecular (auto)photocatalysis, which exploits transient self-assembled complexes, facilitates visible light-driven reactions, with autocatalytic systems promoting sustainable and atom-economical processes. In this study, the photocatalyst Mes-Acr-MeClO4, typically active under blue light, formed a dark red charge-transfer (CT) complex with N-bromoacetamide (NBA) in the presence of K2CO3 in DCE, enabling green-light photocatalysis. This self-assembled CT complex initiated an auto-photocatalytic process via two-photon absorption, generating an N-centered radical that drove anti-Markovnikov, syn-periplanar addition to phenylacetylene, achieving exclusive Z-selective formation of (Z)-N-(2-bromo-2-phenylvinyl)acetamide. Interestingly, the product itself functioned as a potent green-LED photocatalyst (λem = 518 nm, τ = 10 ns), driving its own synthesis with added terminal alkynes. With 100% atom economy, this work highlights a system chemistry approach, showcasing a highly efficient, self-sustaining catalytic process that advances green and sustainable synthetic strategies. This protocol emphasizes sustainability with an outstanding E-factor of 11.15, reflecting minimal waste production (11.15 kg per 1 kg of product) and demonstrating a strong commitment to green chemistry principles.
Collapse