1
|
Das B. Unveiling mechanistic insights and applications of aggregation-enhanced emission (AEE)-active polynuclear transition metal complexes. Chem Commun (Camb) 2025; 61:6391-6416. [PMID: 40176728 DOI: 10.1039/d5cc00690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Aggregation-enhanced emission (AEE) in polynuclear transition metal complexes (PTMCs) represents a major advancement in luminescent materials, overcoming the limitations of aggregation-caused quenching (ACQ) in traditional systems. Unlike conventional materials that suffer from quenching, AEE-active PTMCs exhibit enhanced luminescence in the aggregated state, driven by mechanisms such as restricted molecular motion, π-π stacking, and metal-metal interactions. These properties make PTMCs highly versatile for applications including chemical sensing, bioimaging, photodynamic therapy (PDT), optoelectronics (e.g., OLEDs, WOLEDs, and LEDs), and security technologies (e.g., anti-counterfeiting inks). They enable the sensitive detection of pollutants, facilitate high-performance bioimaging, and enhance the efficiency of energy devices. However, PTMCs face several challenges, including complex synthesis, limited thermal and photostability, solubility issues, and environmental and toxicity concerns. Additionally, high production costs, instability in different media, and the need for optimized energy transfer efficiency must be addressed to enhance their practical performance. This review explores the mechanisms behind AEE in PTMCs and discusses strategies for overcoming these challenges, including ligand engineering, hybrid material development, and sustainable synthesis methods. It also highlights their potential in advancing energy-efficient technologies, precision therapeutics, and secure communication systems, contributing to a more sustainable and innovative future.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| |
Collapse
|
2
|
Habibagahi B, Hoseini SJ, Bahrami M, Nabavizadeh SM, Chen W, De Giglio E, Mesto E, Schingaro E, Rizzuti A, Mastrorilli P. Self-Assembly of a Hierarchical Metal-Organic Framework at the Liquid/Liquid Interface via π-π Stacking Manipulations in Organoplatinum(IV) Complexes for Methanol Fuel Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16303-16319. [PMID: 39029094 DOI: 10.1021/acs.langmuir.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
This study focuses on the facile synthesis of the hierarchical architecture of zeolitic imidazolate framework-8 (ZIF-8) films containing an ultrasmall amount of Pt(0) by investigating the synthesis of different organoplatinum complexes and manipulating the π-π stacking effect in these complexes at the liquid/liquid interface. The organometallic Pt(IV) precursors were complexes with a formula of [PtXMe2(R)(bpy)] (bpy = 2,2'-bipyridine; for complex 2, R = CH2CH═CHC6H5 and X = Br; for complex 3, R = CH2CH═CH2 and X = Br; for complex 4, R = Me and X = I) prepared by oxidative addition of cinnamyl bromide, allyl bromide, or methyl iodide to [PtMe2(bpy)] (complex 1). Different thin films were synthesized starting from three organometallic Pt(IV) precursors (i) by reduction of the Pt complexes at the toluene/water interface (TF2-TF4), (ii) by encapsulation of the Pt precursors in a ZIF-8 (TF5-TF7), and (iii) by reduction of the Pt precursors onto a ZIF-8 (TF8-TF10). The self-assembly of ZIF-8 and different organoplatinum precursors at the interface of two immiscible liquids leads to the preparation of films with well-engineered structures such as rhombic dodecahedra, nanorods, hierarchical architectures, and nanowires, which are very difficult and complicated to synthesize under normal conditions. The ultralow loading of platinum complexes with different degrees of π-π stacking of dangling moieties has a great impact on the structure and morphology (directing agent), which in turn drastically changes the catalytic properties. The obtained films were applied as electrocatalysts for methanol oxidation in fuel cells. The electrocatalytic performance of organoplatinum containing a cinnamyl group in hierarchical architecture TF8 was found to be superior to those of nonhierarchical structures.
Collapse
Affiliation(s)
- Behnaz Habibagahi
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Mehrangiz Bahrami
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | | | | |
Collapse
|
3
|
Zhang H, Chan MHY, Lam J, Chen Z, Leung MY, Wong EKH, Wu L, Yam VWW. Supramolecular assembly of amphiphilic platinum(ii) Schiff base complexes: diverse spectroscopic changes and nanostructures through rational molecular design and solvent control. Chem Sci 2024; 15:8545-8556. [PMID: 38846386 PMCID: PMC11151868 DOI: 10.1039/d3sc06094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
A new class of amphiphilic tetradentate platinum(ii) Schiff base complexes has been designed and synthesized. The self-assembly properties by exploiting the potential Pt⋯Pt interactions of amphiphilic platinum(ii) Schiff base complexes in the solution state have been systematically investigated. The presence of Pt⋯Pt interactions has further been supported by computational studies and non-covalent interaction (NCI) analysis of the dimer of the complex. The extent of the non-covalent Pt⋯Pt and π-π interactions could be regulated by a variation of the solvent compositions and the hydrophobicity of the complexes, which is accompanied by attractive spectroscopic and luminescence changes and leads to diverse morphological transformations. The present work represents a rare example of demonstration of directed cooperative assembly of amphiphilic platinum(ii) Schiff base complexes by intermolecular Pt⋯Pt interactions in solution with an in-depth mechanistic investigation, providing guiding principles for the construction of supramolecular structures with desirable properties using platinum(ii) Schiff base building blocks.
Collapse
Affiliation(s)
- Huilan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jonathan Lam
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Eric Ka-Ho Wong
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
4
|
Yang SY, Chen Y, Kwok RTK, Lam JWY, Tang BZ. Platinum complexes with aggregation-induced emission. Chem Soc Rev 2024; 53:5366-5393. [PMID: 38712843 DOI: 10.1039/d4cs00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Yingying Chen
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
5
|
Chan CWT, Chan K, Yam VWW. Induced Self-Assembly and Disassembly of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complexes with Charge Reversal Properties: "Proof-of-Principle" Demonstration of Ratiometric Förster Resonance Energy Transfer Sensing of pH. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25122-25133. [PMID: 35766435 DOI: 10.1021/acsami.2c05677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A series of pH-responsive alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complexes with charge-reversal properties was synthesized, and the supramolecular assemblies between conjugated polyelectrolyte, PFP-OSO3-, and [Pt{bzimpy(TEG)2}{C≡C-C6H3-(COOH)2-3,5}]Cl (1) have been studied using UV-vis absorption, emission, and resonance light scattering (RLS) spectroscopy. An efficient Förster resonance energy transfer (FRET) from PFP-OSO3- donor to the aggregated 1 as acceptor with the aid of Pt(II)···Pt(II) interactions has been presented, which leads to a growth of triplet metal-metal-to-ligand charge transfer (3MMLCT) emission in the low-energy red region. The two-component PFP-OSO3--1 ensemble was then exploited as a "proof-of-principle" concept strategy for pH sensing by tracking the ratiometric emission changes. With the aid of judicious molecular design on the pH-driven charge-reversal property, the polyelectrolyte-induced self-assembly and the FRET from PFP-OSO3- to the platinum(II) aggregates have been modulated. Together with its excellent reversibility and photostability, the extra stability provided by the Pt(II)···Pt(II) and π-π stacking interactions on top of the electrostatic and hydrophobic interactions existing in polyelectrolye-complex assemblies has led to a selective and sensitive pH sensing assay.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Kevin Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
6
|
Cao J, Poon CT, Chan MHY, Hong EYH, Cheng YH, Hau FKW, Wu L, Yam VWW. Lamellar assembly and nanostructures of amphiphilic boron( iii) diketonates through suitable non-covalent interactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cooperative assemblies of amphiphilic boron(iii) diketonate compounds, which are found to be driven by the formation of non-covalent π–π and hydrophobic interactions in THF–water solution, result in the construction of nanosheet of lamellar packing.
Collapse
Affiliation(s)
- Jingjie Cao
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chun-Ting Poon
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Franky Ka-Wah Hau
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
7
|
Chan MHY, Yam VWW. Toward the Design and Construction of Supramolecular Functional Molecular Materials Based on Metal–Metal Interactions. J Am Chem Soc 2022; 144:22805-22825. [DOI: 10.1021/jacs.2c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
8
|
Jing J, Xu G, Zhang HH, Chen XH, Zhang DS, Han LZ, Qi XW, Shi ZF, Zhang XP. Enhanced circularly polarized luminescence in fluoro-substituted N^C^N-coordinating platinum(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Martínez-Junquera M, Lalinde E, Moreno MT. Multistimuli-Responsive Properties of Aggregated Isocyanide Cycloplatinated(II) Complexes. Inorg Chem 2022; 61:10898-10914. [PMID: 35775932 PMCID: PMC9348835 DOI: 10.1021/acs.inorgchem.2c01400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we describe the neutral cyclometalated tert-butylisocyanide PtII complexes, [Pt(C∧N)Cl(CNBut)] 1, the double salts [Pt(C∧N)(CNBut)2][Pt(C∧N)Cl2] 2, and the cationic complexes [Pt(C∧N)(CNBut)2]ClO4 3 [C∧N = difluorophenylpyridine (dfppy, a), 4-(2-pyridyl)benzaldehyde (ppy-CHO, b)]. A comparative study of the pseudopolymorphs 1a, 1a·CHCl3, 1b, 1b·0.5Toluene, 1b·0.5PhF, and 3a·0.25CH2Cl2 reveals strong aggregation through Pt···Pt and/or π···π stacking interactions to give a variety of distinctive one-dimensional (1D) infinite chains, which modulate the photoluminescent properties. This intermolecular long-range aggregate formation is the main origin of the photoluminescent behavior of 1a and 1b complexes, which exhibit highly sensitive and reversible responses to multiple external stimuli including different volatile organic compounds (VOCs), solvents, temperatures, and pressures, with distinct color and phosphorescent color switching from green to red. Furthermore, complex 1b undergoes supramolecular self-assembly via Pt···Pt and/or π···π interactions into a polymer thin polystyrene (PS) film 10 wt % in response to toluene vapors, and 3a exhibits vapochromic and vapoluminescent behavior. Theoretical simulations on the dimer, trimer, and tetramer models of 1a and 1b have been carried out to get insight into the photophysical properties in the aggregated solid state.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
10
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Wong EKH, Chan MHY, Tang WK, Leung MY, Yam VWW. Molecular Alignment of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2-yl)pyridine Double Complex Salts and the Formation of Well-Ordered Nanostructures Directed by Pt···Pt and Donor-Acceptor Interactions. J Am Chem Soc 2022; 144:5424-5434. [PMID: 35302371 DOI: 10.1021/jacs.1c12994] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new class of alkynylplatinum(II) bzimpy (bzimpy = bis(benzimidazol-2-yl)pyridine) double complex salts (DCSs) containing dialkoxynaphthalene or pyromellitic diimide moieties on the alkynyl ligand has been reported to display distinct morphological properties compared to their precursor alkynylplatinum(II) complexes, with the capability of being aligned by the directional Pt···Pt and/or π-π stacking interactions. The incorporation of donor and acceptor units on the alkynyl ligands has been found to significantly perturb the alignment of the oppositely charged complex ions in the DCSs to stack in a twisted head-to-head manner, attributed to the additional driving forces of electrostatic and donor-acceptor interactions. The modulation of the Pt···Pt distances and the extent of aggregate formation have been demonstrated by altering the charge matching between the platinum(II) bzimpy moieties and the donor or acceptor moieties on the alkynyl ligand.
Collapse
Affiliation(s)
- Eric Ka-Ho Wong
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Wai Kit Tang
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
12
|
The structure and spectroscopic properties of the metallophilic Pt/Pd complexes based on pyridine/pyrazol ligands: A computational investigation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Basuyaux G, Amar A, Troufflard C, Boucekkine A, Métivier R, Raynal M, Moussa J, Bouteiller L, Amouri H. Cyclometallated Pt(II) Complexes Containing a Functionalized Bis‐Urea Alkynyl Ligand: Probing Aggregation Mediated by Hydrogen Bonds
versus
Pt⋅⋅⋅Pt and π−π Interactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaëtan Basuyaux
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Anissa Amar
- Laboratoire de Chimie et de Physique Quantiques Faculté des Sciences, U.M.M.T.O 15000 Tizi-Ouzou Algeria
| | - Claire Troufflard
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Abdou Boucekkine
- Univ. Rennes ISCR UMR 6226 CNRS Campus de Beaulieu 35042 Rennes Cedex France
| | - Rémi Métivier
- PPSM, ENS Paris-Saclay, CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Matthieu Raynal
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Jamal Moussa
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| | - Hani Amouri
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire 4 place Jussieu 75005 Paris France
| |
Collapse
|
14
|
|
15
|
Synthesis and UV-light induced oligomerization of a benzofulvene-based neutral platinum(II) complex. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Park J, Hwang M, Ok M, Li C, Choi H, Seo ML, Jung JH. Supramolecular polymerization of Pt(II) complex with terpyridine-based ligand possessing alanine moiety in nonpolar solvent. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Yoshida M, Hirao T, Haino T. Self-assembly of neutral platinum complexes possessing chiral hydrophilic TEG chains. Org Biomol Chem 2021; 19:5303-5311. [PMID: 33969859 DOI: 10.1039/d1ob00492a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutral platinum complexes that possess chiral triethylene glycol (TEG) moieties were synthesized. The platinum complexes formed helically twisted stacked assemblies in chloroform and toluene, which were studied by 1H NMR, UV/vis spectroscopy, and emission spectroscopy. On the other hand, emissive micellar aggregates were observed in a THF/water mixed solvent. Dynamic light scattering (DLS) experiments revealed that micellar aggregates with a diameter (d) of ≈100 nm emitted strong light, whereas the monomeric form and large aggregates (d > 500 nm) did not show luminescence efficiently. Furthermore, the micellar aggregates were twisted chirally, where the twisted direction was determined by the chirality of the TEG moieties. The assemblies were observed to be solvent responsive, which allows for the modulation of the nanostructure by changing the solvent polarity.
Collapse
Affiliation(s)
- Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
18
|
Gao Q, Peng F, Wang C, Lin J, Chang X, Zou C, Lu W. Phosphorescent Zwitterionic Pt(
II
)
N
‐Heterocyclic
Allenylidene Complexes: Metallophilicity and Ionic
Self‐Assembly
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qin Gao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fei Peng
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuanfei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jinqiang Lin
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zou
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Li Y, Huo GF, Liu B, Song B, Zhang Y, Qian X, Wang H, Yin GQ, Filosa A, Sun W, Hla SW, Yang HB, Li X. Giant Concentric Metallosupramolecule with Aggregation-Induced Phosphorescent Emission. J Am Chem Soc 2020; 142:14638-14648. [DOI: 10.1021/jacs.0c06680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Gui-Fei Huo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Zhang
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Xiaomin Qian
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Alexander Filosa
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
20
|
Bäumer N, Kartha KK, Palakkal JP, Fernández G. Morphology control in metallosupramolecular assemblies through solvent-induced steric demand. SOFT MATTER 2020; 16:6834-6840. [PMID: 32633744 DOI: 10.1039/d0sm00537a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the supramolecular self-assembly of π-conjugated systems into defined morphologies is a prerequisite for the preparation of functional materials. In recent years, the development of sophisticated sample preparation protocols and modulation of various experimental conditions (solvent, concentration, temperature, etc.) have enabled precise control over aggregation pathways of different types of monomer units. A common method to achieve pathway control consists in the combination of two miscible solvents in defined proportions - a "poor" and "good" solvent. However, the role of solvents of opposed polarity in the self-assembly of a given building block still remains an open question. Herein, we unravel the effect of aggregation-inducing solvent systems of opposed polarity (aqueous vs. non-polar media) on the supramolecular assembly of a new bolaamphiphilic Pt(ii) complex. A number of experimental methods show a comparable molecular packing in both media driven by a synergy of solvophobic, aromatic and weak hydrogen-bonding interactions. However, morphological analysis of the respective aggregates in aqueous and non-polar media reveals a restricted aggregate growth in aqueous media into spherical nanoparticles and a non-restricted 2D-nanosheet formation in non-polar media. These findings are attributed to a considerably more efficient solvation and, in turn, increased steric demand of the hydrophilic chains in aqueous media than in nonpolar media, which can be explained by the entrapment of water molecules in the hydrophilic aggregate shell via hydrogen bonds. Our findings reveal that the different solvation of peripheral solubilizing groups in solvents of opposed polarity is an efficient method for morphology control in self-assembly.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
21
|
Han Y, Gao Z, Wang C, Zhong R, Wang F. Recent progress on supramolecular assembly of organoplatinum(II) complexes into long-range ordered nanostructures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213300] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Li Y, Liu K, Li X, Quan Y, Cheng Y. The amplified circularly polarized luminescence regulated from D–A type AIE-active chiral emitters via liquid crystals system. Chem Commun (Camb) 2020; 56:1117-1120. [DOI: 10.1039/c9cc09067c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two pairs of D–A type AIE-active chiral dyes doped into host 5CB form N*-LCs and regulate the amplified CPL signals. R-/S-2 with stronger D–A structure and more planar conformation could induce higher CPL response (glum = ±0.37) in N*-LCs system.
Collapse
Affiliation(s)
- Yang Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Kerui Liu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Xiaojing Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
23
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Chan MHY, Leung SYL, Yam VWW. Rational Design of Multi-Stimuli-Responsive Scaffolds: Synthesis of Luminescent Oligo(ethynylpyridine)-Containing Alkynylplatinum(II) Polypyridine Foldamers Stabilized by Pt···Pt Interactions. J Am Chem Soc 2019; 141:12312-12321. [DOI: 10.1021/jacs.9b04447] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
25
|
Ai Y, Li Y, Fu HLK, Chan AKW, Yam VWW. Aggregation and Tunable Color Emission Behaviors of l-Glutamine-Derived Platinum(II) Bipyridine Complexes by Hydrogen-Bonding, π-π Stacking and Metal-Metal Interactions. Chemistry 2019; 25:5251-5258. [PMID: 30680815 DOI: 10.1002/chem.201805901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 12/13/2022]
Abstract
An l-glutamine-derived functional group was introduced to the bis(arylalkynyl)platinum(II) bipyridine complexes 1-4. The emission could be switched between the 3 MLCT excited state and the triplet excimeric state through solvent or temperature changes, which is attributed to the formation and disruption of hydrogen-bonding, π-π stacking, and metal-metal interactions. Different architectures with various morphologies, such as honeycomb nanostructures and nanospheres, were formed upon solvent variations, and these changes were accompanied by 1 H NMR and distinct emission changes. Additionally, yellow and red emissive metallogels were formed at room temperature due to the different aggregation behaviors introduced by the substituent groups on bipyridine. The thermoresponsive metallogel showed emission behavior with tunable colors by controlling the temperature. The negative Gibbs free-energy change (ΔG) and the large association constant for excimer formation have suggested that the molecules undergo aggregation through hydrogen-bonding, π-π, and metal-metal interactions, resulting in triplet excimeric emission.
Collapse
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Heidi Li-Ki Fu
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
26
|
Song J, Wang M, Xu X, Qu L, Zhou X, Xiang H. 1D-helical platinum(ii) complexes bearing metal-induced chirality, aggregation-induced red phosphorescence, and circularly polarized luminescence. Dalton Trans 2019; 48:4420-4428. [DOI: 10.1039/c8dt03615b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Binaphthyls-linked Pt(ii) complexes with metal-induced chirality self-assemble to build 1D M or P helices and show aggregation/racemization-induced and circularly polarized luminescence.
Collapse
Affiliation(s)
- Jintong Song
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Man Wang
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Xuemei Xu
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Lang Qu
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Xiangge Zhou
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | | |
Collapse
|
27
|
Wang Z, Yang FL, Yang Y, Liu QY, Sun D. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag 6 kernels. Chem Commun (Camb) 2019; 55:10296-10299. [PMID: 31397445 DOI: 10.1039/c9cc05044b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hierarchical nano structures are hard to fabircate. Here, we present three novel hierarchical multi-shell 66-nuclei silver nanoclusters, trapping ultrasmall Ag64+ nano-fragments by nine MoO42- ions. This Ag6@(MoO4)9 core is further wrapped by an outer Ag60 shell. The Ag6 kernel evolves from reduction involving DMF solvent. Carboxylate ligands are very important in the modulation of the polygon patterns on the Ag60 shell.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | |
Collapse
|
28
|
Chen J, Ao L, Wei C, Wang C, Wang F. Self-assembly of platinum(ii) 6-phenyl-2,2'-bipyridine complexes with solvato- and iono-chromic phenomena. Chem Commun (Camb) 2018; 55:229-232. [PMID: 30525175 DOI: 10.1039/c8cc06770h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mono- and di-nuclear organoplatinum(ii) monomers with cyclometalated 6-phenyl-2,2'-bipyridine ligands have been successfully constructed. These systems are capable of displaying intriguing solvato- and iono-chromic phenomena by elaborately manipulating non-covalent PtPt metal-metal and π-π stacking interactions for their self-assembly processes.
Collapse
Affiliation(s)
- Jiangjun Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | |
Collapse
|
29
|
Tashiro K, Ohtsu H, Kawano M, Kojima T, Kato T. Platinum(II) Terpyridine Complex That Switches Its Photochemical Reactivity in Response to Its Chromic Behavior in the Crystalline State. Inorg Chem 2018; 57:13079-13082. [PMID: 30354098 DOI: 10.1021/acs.inorgchem.8b02400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A platinum(II) terpyridine complex having an enantiopure lactate anion afforded hydrated crystals l- or d-1hyd containing infinite chains of interacting Pt centers, while their dehydration induced crystal-to-crystal transformation into l- or d-1dehyd, respectively, exhibiting less significant Pt-Pt and/or ligand-ligand interactions. That transformation was accompanied by changes in the color as well as the photochemical reactivity of the crystals, where l-1dehyd showed higher reactivity than l-1hyd in the presence of amines under visible-light irradiation.
Collapse
Affiliation(s)
- Kentaro Tashiro
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , 1-1 Namiki , Tsukuba, Ibaraki 305-0044 , Japan
| | - Hiroyoshi Ohtsu
- School of Science , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Masaki Kawano
- School of Science , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Tatsuhiro Kojima
- Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka, Osaka 560-0043 , Japan
| | - Tatsuhisa Kato
- Institute for Liberal Arts and Sciences , Kyoto University , Yoshida-Nihonmatsu , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
30
|
Fang S, Leung SYL, Li Y, Yam VWW. Directional Self-Assembly and Photoinduced Polymerization of Diacetylene-Containing Platinum(II) Terpyridine Complexes. Chemistry 2018; 24:15596-15602. [PMID: 30221406 DOI: 10.1002/chem.201802592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Indexed: 11/07/2022]
Abstract
A series of newly designed and synthesized diacetylene-containing platinum(II) terpyridine complexes exhibited intriguing self-assembly properties. Facilitated by Pt⋅⋅⋅Pt, π-π stacking, hydrogen-bonding and hydrophobic-hydrophobic interactions, these complexes are preorganized to readily undergo topochemical polymerization reactions upon photoirradiation. The in situ polymerization of the diacetylene units to form polydiacetylene, indicated by the UV/Vis spectral changes, gel permeation chromatography and dynamic light scattering, was found to alter their assembly behaviours, as revealed by TEM images.
Collapse
Affiliation(s)
- Shishi Fang
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yongguang Li
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grant Committee (Hong Kong), and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
31
|
Kim KY, Kim J, Park H, Choi Y, Kwon KY, Jung JH. Helical Inversion of Peptide-based Supramolecular Co 2+
Complexes. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences; Gyeongsang National University; Jinju 52828 Korea
| | - Jaehyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences; Gyeongsang National University; Jinju 52828 Korea
| | - Hyesong Park
- Department of Chemistry and Research Institute of Natural Sciences; Gyeongsang National University; Jinju 52828 Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences; Gyeongsang National University; Jinju 52828 Korea
| | - Ki-Young Kwon
- Department of Chemistry and Research Institute of Natural Sciences; Gyeongsang National University; Jinju 52828 Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences; Gyeongsang National University; Jinju 52828 Korea
| |
Collapse
|
32
|
Ai Y, Ng M, Hong EY, Chan AK, Wei Z, Li Y, Yam VW. Solvent‐Induced and Temperature‐Promoted Aggregation of Bipyridine Platinum(II) Triangular Metallacycles and Their Near‐Infrared Emissive Behaviors. Chemistry 2018; 24:11611-11618. [DOI: 10.1002/chem.201802499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Maggie Ng
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Eugene Yau‐Hin Hong
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Alan Kwun‐Wa Chan
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Zhang‐Wen Wei
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yongguang Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| |
Collapse
|
33
|
Attoui M, Pouget E, Oda R, Talaga D, Le Bourdon G, Buffeteau T, Nlate S. Optically Active Polyoxometalate-Based Silica Nanohelices: Induced Chirality from Inorganic Nanohelices to Achiral POM Clusters. Chemistry 2018; 24:11344-11353. [DOI: 10.1002/chem.201801905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Mariam Attoui
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN); CNRS, UMR 5248; Université de Bordeaux-Bordeaux INP; Allée St Hilaire, Bat B14 33607 Pessac France
- Institut des Sciences Moléculaires (ISM); CNRS, UMR 5255; Université de Bordeaux; 351 Cours de la libération 33405 Talence France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN); CNRS, UMR 5248; Université de Bordeaux-Bordeaux INP; Allée St Hilaire, Bat B14 33607 Pessac France
| | - Reiko Oda
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN); CNRS, UMR 5248; Université de Bordeaux-Bordeaux INP; Allée St Hilaire, Bat B14 33607 Pessac France
| | - David Talaga
- Institut des Sciences Moléculaires (ISM); CNRS, UMR 5255; Université de Bordeaux; 351 Cours de la libération 33405 Talence France
| | - Gwénaëlle Le Bourdon
- Institut des Sciences Moléculaires (ISM); CNRS, UMR 5255; Université de Bordeaux; 351 Cours de la libération 33405 Talence France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires (ISM); CNRS, UMR 5255; Université de Bordeaux; 351 Cours de la libération 33405 Talence France
| | - Sylvain Nlate
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN); CNRS, UMR 5248; Université de Bordeaux-Bordeaux INP; Allée St Hilaire, Bat B14 33607 Pessac France
| |
Collapse
|
34
|
Puttock EV, Walden MT, Williams JG. The luminescence properties of multinuclear platinum complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Chan MHY, Leung SYL, Yam VWW. Controlling Self-Assembly Mechanisms through Rational Molecular Design in Oligo(p-phenyleneethynylene)-Containing Alkynylplatinum(II) 2,6-Bis(N-alkylbenzimidazol-2′-yl)pyridine Amphiphiles. J Am Chem Soc 2018; 140:7637-7646. [DOI: 10.1021/jacs.8b03628] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
36
|
Kotturi K, Masson E. Directional Self-Sorting with Cucurbit[8]uril Controlled by Allosteric π-π and Metal-Metal Interactions. Chemistry 2018; 24:8670-8678. [PMID: 29601113 DOI: 10.1002/chem.201800856] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 12/14/2022]
Abstract
To maximize Coulombic interactions, cucurbit[8]uril (CB[8]) typically forms ternary complexes that distribute the positive charges of the pair of guests (if any) over both carbonylated portals of the macrocycle. We present here the first exception to this recognition pattern. Platinum(II) acetylides flanked by 4'-substituted terpyridyl ligands (tpy) form 2:1 complexes with CB[8] in an exclusively stacked head-to-head orientation in a water/acetonitrile mixture. The host encapsulates the pair of tpy substituents, and both positive Pt centers sit on top of each other at the same CB[8] rim, leaving the other rim free of any interaction with the guests. This dramatic charge imbalance between the CB[8] rims would be electrostatically penalizing, were it not for allosteric π-π interactions between the stacked tpy ligands, and possible metal-metal interactions between both Pt centers. When both tpy and acetylides are substituted with aryl units, the metal-ligand complexes form 2:2 assemblies with CB[8] in aqueous medium, and the directionality of the assembly (head-to-head or head-to-tail) can be controlled, both kinetically and thermodynamically.
Collapse
Affiliation(s)
- Kondalarao Kotturi
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| |
Collapse
|
37
|
Ibáñez S, Peris E. Chemically Tunable Formation of Different Discrete, Oligomeric, and Polymeric Self-Assembled Structures from Digold Metallotweezers. Chemistry 2018; 24:8424-8431. [DOI: 10.1002/chem.201801134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM); Universitat Jaume I; Av. Vicente Sos Baynat s/n Castelló 12006 Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM); Universitat Jaume I; Av. Vicente Sos Baynat s/n Castelló 12006 Spain
| |
Collapse
|
38
|
Au-Yeung HL, Leung SYL, Yam VWW. Supramolecular assemblies of dinuclear alkynylplatinum(ii) terpyridine complexes with double-decker silsesquioxane nano-cores: the role of isomerism in constructing nano-structures. Chem Commun (Camb) 2018; 54:4128-4131. [PMID: 29623317 DOI: 10.1039/c8cc00557e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Isomeric double-decker silsesquioxane-functionalized dinuclear alkynylplatinum(ii) terpyridine complexes demonstrate self-association behaviours via the stabilisation of hydrophobic, PtPt and/or π-π stacking interactions. These supramolecular architectures and molecular packings are found to be closely related to the isomeric configurations of the complexes and have been investigated using various spectroscopic studies.
Collapse
Affiliation(s)
- Ho-Leung Au-Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | |
Collapse
|
39
|
Chen L, Wang H, Zhang DW, Zhou Y, Li ZT. Pt⋯Pt and π–π interactions-induced pleated polymeric foldamers. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Wong VCH, Po C, Leung SYL, Chan AKW, Yang S, Zhu B, Cui X, Yam VWW. Formation of 1D Infinite Chains Directed by Metal–Metal and/or π–π Stacking Interactions of Water-Soluble Platinum(II) 2,6-Bis(benzimidazol-2′-yl)pyridine Double Complex Salts. J Am Chem Soc 2018; 140:657-666. [DOI: 10.1021/jacs.7b09770] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Victor Chun-Hei Wong
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)), and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Charlotte Po
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)), and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)), and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)), and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Siyuan Yang
- Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Bairen Zhu
- Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Xiaodong Cui
- Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)), and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
41
|
Zhang X, Ao L, Han Y, Gao Z, Wang F. Modulating Pt⋯Pt metal–metal interactions through conformationally switchable molecular tweezer/guest complexation. Chem Commun (Camb) 2018; 54:1754-1757. [DOI: 10.1039/c8cc00216a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pt(ii)⋯Pt(ii) metal–metal interactions can be modulated for molecular tweezer/guest complexation systems in response to pH variation.
Collapse
Affiliation(s)
- Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Lei Ao
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Zhao Gao
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|
42
|
Xu X, Hu F, Ma Y, Gao J, Shuai Q. Facile microwave synthesis, structural diversity and herbicidal activity of six novel alkaline-earth metal complexes (AECs) based on skeletal isomerization chlorophenoxyacetic acids. NEW J CHEM 2018. [DOI: 10.1039/c8nj00107c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile microwave synthesis, structural diversity and herbicidal activity of six novel alkaline-earth metal complexes (AECs) based on skeletal isomerization chlorophenoxyacetic acids.
Collapse
Affiliation(s)
- Xiuling Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Fan Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Yuwei Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- People's Republic of China
| | - Qi Shuai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- People's Republic of China
| |
Collapse
|
43
|
Zhang XP, Wang LL, Zhang DS, Qi XW, Shi ZF, Lin Q. Solvent-tuned charge-transfer properties of chiral Pt(ii) complex and TCNQ˙− anion adducts. RSC Adv 2018; 8:10756-10763. [PMID: 35541534 PMCID: PMC9078908 DOI: 10.1039/c8ra01330f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/04/2018] [Indexed: 11/22/2022] Open
Abstract
A new pair of adducts comprising one chiral Pt(ii) complex cation, [Pt((−)-L1)(Dmpi)]+ ((−)-1) or [Pt((+)-L1)(Dmpi)]+ ((+)-1) [(−)-L1 = (−)-4,5-pinene-6′-phenyl-2,2′-bipyridine, (+)-L1 = (+)-4,5-pinene-6′-phenyl-2,2′-bipyridine, Dmpi = 2,6-dimethylphenylisocyanide], together with one TCNQ˙− anion have been obtained, and the structures have been confirmed via single-crystal X-ray crystallography and infrared (IR) spectroscopy. The chiral Pt(ii) cation and TCNQ˙− anion are dissociated in MeOH solution, while charge transfer adducts are formed in H2O solution, leading to perturbation of the electronic structure and alteration of the chiral environment, as evidenced by the differences in the UV-vis absorption and electronic circular dichroism spectra. The solvent-tuned charge-transfer properties also have been validated through emission and resonance light scattering spectra. The interesting findings may have potential applications in the development of black absorbers and wide band gap semiconductors. A new couple of charge transfer adducts comprising of one chiral Pt(ii) complex cation together with one TCNQ˙− anion have been prepared, and solvent-induced variances of absorption, luminescence as well as chiral spectra have been investigated.![]()
Collapse
Affiliation(s)
- Xiao-Peng Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- People's Republic of China
| | - Li-Li Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- People's Republic of China
| | - Da-Shuai Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- People's Republic of China
| | - Xiao-Wei Qi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- People's Republic of China
| | - Zai-Feng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- People's Republic of China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- People's Republic of China
| |
Collapse
|
44
|
Li X, Poon CT, Hong EYH, Wong HL, Chan AKW, Wu L, Yam VWW. Multi-modulation for self-assemblies of amphiphilic rigid-soft compounds through alteration of solution polarity and temperature. SOFT MATTER 2017; 13:8408-8418. [PMID: 29077127 DOI: 10.1039/c7sm01754e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new class of small molecule-based amphiphilic carbazole-containing compounds has been designed and synthesized. Detailed analysis of the temperature- and solvent-dependent UV-vis absorption spectra has provided insights into the cooperative self-assembly mechanism of the carbazole-containing compounds. Interestingly, the prepared amphiphilic rigid-soft compounds were also found to display a lower critical solution temperature (LCST) behavior in aqueous solution, which is relatively less explored in small molecule-based materials, leading to promising candidates for the design of a new class of thermo-responsive materials.
Collapse
Affiliation(s)
- Xiaoying Li
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chan MHY, Ng M, Leung SYL, Lam WH, Yam VWW. Synthesis of Luminescent Platinum(II) 2,6-Bis(N-dodecylbenzimidazol-2′-yl)pyridine Foldamers and Their Supramolecular Assembly and Metallogel Formation. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b03635] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, People’s Republic of China
| | - Maggie Ng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, People’s Republic of China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, People’s Republic of China
| | - Wai Han Lam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, People’s Republic of China
| |
Collapse
|
46
|
Zhang K, Yeung MCL, Leung SYL, Yam VWW. Manipulation of Nanostructures in the Co-assembly of Platinum(II) Complexes and Block Copolymers. Chem 2017. [DOI: 10.1016/j.chempr.2017.04.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Leung SYL, Evariste S, Lescop C, Hissler M, Yam VWW. Supramolecular assembly of a phosphole-based moiety into nanostructures dictated by alkynylplatinum(ii) terpyridine complexes through non-covalent Pt···Pt and π-π stacking interactions: synthesis, characterization, photophysics and self-assembly behaviors. Chem Sci 2017; 8:4264-4273. [PMID: 29081962 PMCID: PMC5635724 DOI: 10.1039/c7sc00041c] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 11/21/2022] Open
Abstract
A new class of platinum(ii) terpyridine complexes with a phosphole-derived bridging alkynyl ligand have been prepared. The X-ray crystal structure of complex 2 has been determined, and reveals a polymeric zig-zag chain structure with the existence of π-π stacking interactions. The photophysical properties have also been studied, with 3MLCT/3LLCT phosphorescence exhibited in degassed CH2Cl2; the energy of which is varied by the π-conjugation of the terpyridine ligands. The solvent-induced assembly of complex 1 has been studied. The incorporation of hydrophobic hydrocarbon chains has been shown to play an important role in assisting the formation of self-assembled nanostructures via Pt···Pt, π-π stacking and hydrophobic-hydrophobic interactions. It has been established that an isodesmic growth mechanism operates in polar media to give nanospheres, while fibrous networks originate from the self-assembly of the complexes in non-polar media, predominantly driven by π-π stacking interactions.
Collapse
Affiliation(s)
- Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Sloane Evariste
- Institut des Sciences Chimiques de Rennes , UMR 6226 CNRS-Université de Rennes 1 , Campus de Beaulieu , Rennes Cedex , France .
| | - Christophe Lescop
- Institut des Sciences Chimiques de Rennes , UMR 6226 CNRS-Université de Rennes 1 , Campus de Beaulieu , Rennes Cedex , France .
| | - Muriel Hissler
- Institut des Sciences Chimiques de Rennes , UMR 6226 CNRS-Université de Rennes 1 , Campus de Beaulieu , Rennes Cedex , France .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| |
Collapse
|
48
|
Chung CYS, Fung SK, Tong KC, Wan PK, Lok CN, Huang Y, Chen T, Che CM. A multi-functional PEGylated gold(iii) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem Sci 2017; 8:1942-1953. [PMID: 28451309 PMCID: PMC5384453 DOI: 10.1039/c6sc03210a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022] Open
Abstract
Gold(iii) porphyrin-PEG conjugates [Au(TPP-COO-PEG5000-OCH3)]Cl (1) and [Au(TPP-CONH-PEG5000-OCH3)]Cl (2) have been synthesized and characterized. Based on the amphiphilic character of the conjugates, they were found to undergo self-assembly into nanostructures with size 120-200 nm and this did not require the presence of other surfactants or components for nano-assembly, unlike most conventional drug nano-formulations. With a readily hydrolyzable ester linkage, chemotherapeutic [Au(TPP-COOH)]+ exhibited triggered release from the conjugate 1 in acidic buffer solution as well as in vitro and in vivo without the formation of toxic side products. The nanostructures of 1 showed higher cellular uptake into cancer cells compared to non-tumorigenic cells, owing to their energy-dependent uptake mechanism. This, together with a generally higher metabolic rate and more acidic nature of cancer cells which can lead to faster hydrolysis of the ester bond, afforded 1 with excellent selectivity in killing cancer cells compared with non-tumorigenic cells in vitro. This was corroborated by fluorescence microscopy imaging and flow cytometric analysis of co-culture model of colon cancer (HCT116) and normal colon (NCM460) cells. In vivo experiments showed that treatment of nude mice bearing HCT116 xenografts with 1 resulted in significant inhibition of tumor growth and, more importantly, minimal systemic toxicity as revealed by histopathological analysis of tissue sections and blood biochemisty. The latter is explained by a lower accumulation of 1 in organs of treated mice at its effective dosage, as compared to that of other gold(iii) porphyrin complexes. Co-assembly of 1 and doxorubicin resulted in encapsulation of doxorubicin by the nanostructures of 1. The nanocomposites demonstrated a strong synergism on killing cancer cells and could overcome efflux pump-mediated drug-resistance in a doxorubicin-resistant ovarian cancer cell line (A2780adr) which was found in cells incubated with doxorubicin alone. Also, the nanocomposites accumulated more slowly in non-tumorigenic cells, resulting in a lower toxicity toward non-tumorigenic cells. These results indicate the potential application of 1 not only as an anti-cancer agent but also as a nanoscale drug carrier for chemotherapy.
Collapse
Affiliation(s)
- Clive Yik-Sham Chung
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry and Chemical Biology Centre , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Sin-Ki Fung
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry and Chemical Biology Centre , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry and Chemical Biology Centre , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Pui-Ki Wan
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry and Chemical Biology Centre , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry and Chemical Biology Centre , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Yanyu Huang
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Tianfeng Chen
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry and Chemical Biology Centre , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| |
Collapse
|
49
|
Au-Yeung HL, Tam AYY, Leung SYL, Yam VWW. Supramolecular assembly of platinum-containing polyhedral oligomeric silsesquioxanes: an interplay of intermolecular interactions and a correlation between structural modifications and morphological transformations. Chem Sci 2017; 8:2267-2276. [PMID: 28507683 PMCID: PMC5408568 DOI: 10.1039/c6sc04169h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
A series of alkynylplatinum(ii) terpyridine complexes functionalized with polyhedral oligomeric silsesquioxane (POSS) moieties has been demonstrated to exhibit drastic color changes and give various distinctive nanostructures with interesting multi-stage morphological transformations from spheres to nanoplates in response to solvent conditions through the interplay of various intermolecular interactions, including hydrophilic-hydrophilic, hydrophobic-hydrophobic, Pt···Pt and π-π stacking interactions. These supramolecular architectures can be systematically modified and controlled through the molecular design and the variation of solvent compositions. In particular, drastic changes in color in response to solvent polarity were observed through the incorporation of the charged moieties, representing a new class of potential candidates for functional materials with sensing or imaging capabilities. This class of complexes has been studied by 1H NMR spectroscopy, electron microscopy, UV-vis absorption and emission spectroscopy.
Collapse
Affiliation(s)
- Ho-Leung Au-Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Anthony Yiu-Yan Tam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| |
Collapse
|
50
|
Fu HLK, Po C, Leung SYL, Yam VWW. Self-Assembled Architectures of Alkynylplatinum(II) Amphiphiles and Their Structural Optimization: A Balance of the Interplay Among Pt···Pt, π-π Stacking, and Hydrophobic-Hydrophobic Interactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2786-2795. [PMID: 28079355 DOI: 10.1021/acsami.6b12584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of alkynylplatinum(II) terpyridine complexes with triethylene glycol units was synthesized, and their self-assembly properties were investigated in solution by UV-vis absorption, emission, and 1H NMR spectroscopy. The aggregation behaviors of several water-soluble complexes were investigated in aqueous media. Some of them were found to give rise to uniform fibers, suggesting the important role that triethylene glycol units has in regulating their self-assembly properties. Further modifications of these structures through the incorporation of alkyl chains and changes in counter-anions have rendered the complexes more amphiphilic in nature, and the effect of their alkyl chain lengths was studied and optimized. The distinguishable color and spectral changes upon variations in solvent compositions might have potential applications in developing colorimetric and luminescent probes for the detection of microenvironment change. Furthermore, an optimum chain length, i.e., n-butyl chain, is required for the formation of stable and ordered nanostructures. This represents a delicate balance among Pt···Pt, π-π stacking, and hydrophobic-hydrophobic interactions and provides guiding principles into the construction of supramolecular materials with practical applications.
Collapse
Affiliation(s)
- Heidi Li-Ki Fu
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee, Hong Kong, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Charlotte Po
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee, Hong Kong, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee, Hong Kong, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee, Hong Kong, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| |
Collapse
|