1
|
Smolyar IV, Cockroft SL. Unveiling Repulsion in Intramolecular H-Bonded Systems. J Am Chem Soc 2025; 147:12381-12385. [PMID: 40193279 DOI: 10.1021/jacs.5c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intramolecular H-bonds govern molecular conformation and play critical roles in pharmaceutical design, catalysis, and supramolecular chemistry. Despite this, the experimental influence of ortho-substituents on the energetics of an adjacent H-bond defies classical Hammett analysis. By using synthetic molecular balances, we show that substituents positioned ortho to an OH H-bond donor can compete strongly with H-bonding to an external acceptor. Computational dissection of the experimental trends reveals that this competition is rarely dominated by stabilizing OH···R H-bonds, but rather by the avoidance of repulsive HO···R interactions. We provide a framework for rationalizing the influence of ortho-substituents on molecular conformation and the energetics of intramolecular H-bonds. Our work challenges the intuitive bias of attributing close contacts to attractive interactions and highlights the critical role of repulsion in molecular design.
Collapse
Affiliation(s)
- Ivan V Smolyar
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
2
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
3
|
Falcioni F, Bennett S, Stroer-Jarvis P, Popelier PLA. Probing Non-Covalent Interactions through Molecular Balances: A REG-IQA Study. Molecules 2024; 29:1043. [PMID: 38474554 DOI: 10.3390/molecules29051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The interaction energies of two series of molecular balances (1-X with X = H, Me, OMe, NMe2 and 2-Y with Y = H, CN, NO2, OMe, NMe2) designed to probe carbonyl…carbonyl interactions were analysed at the B3LYP/6-311++G(d,p)-D3 level of theory using the energy partitioning method of Interacting Quantum Atoms/Fragments (IQA/IQF). The partitioned energies are analysed by the Relative Energy Gradient (REG) method, which calculates the correlation between these energies and the total energy of a system, thereby explaining the role atoms have in the energetic behaviour of the total system. The traditional "back-of-the-envelope" open and closed conformations of molecular balances do not correspond to those of the lowest energy. Hence, more care needs to be taken when considering which geometries to use for comparison with the experiment. The REG-IQA method shows that the 1-H and 1-OMe balances behave differently to the 1-Me and 1-NMe2 balances because the latter show more prominent electrostatics between carbonyl groups and undergoes a larger dihedral rotation due to the bulkiness of the functional groups. For the 2-Y balance, REG-IQA shows the same behaviour across the series as the 1-H and 1-OMe balances. From an atomistic point of view, the formation of the closed conformer is favoured by polarisation and charge-transfer effects on the amide bond across all balances and is counterbalanced by a de-pyramidalisation of the amide nitrogen. Moreover, focusing on the oxygen of the amide carbonyl and the α-carbon of the remaining carbonyl group, electrostatics have a major role in the formation of the closed conformer, which goes against the well-known n-π* interaction orbital overlap concept. However, REG-IQF shows that exchange-correlation energies overtake electrostatics for all the 2-Y balances when working with fragments around the carbonyl groups, while they act on par with electrostatics for the 1-OMe and 1-NMe2. REG-IQF also shows that exchange-correlation energies in the 2-Y balance are correlated to the inductive electron-donating and -withdrawing trends on aromatic groups. We demonstrate that methods such as REG-IQA/IQF can help with the fine-tuning of molecular balances prior to the experiment and that the energies that govern the probed interactions are highly dependent on the atoms and functional groups involved.
Collapse
Affiliation(s)
- Fabio Falcioni
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sophie Bennett
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Pallas Stroer-Jarvis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul L A Popelier
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Díaz-Casado L, Villacampa A, Corzana F, Jiménez-Barbero J, Gómez AM, Santana AG, Asensio JL. Illuminating a Solvent-Dependent Hierarchy for Aromatic CH/π Complexes with Dynamic Covalent Glyco-Balances. JACS AU 2024; 4:476-490. [PMID: 38425929 PMCID: PMC10900200 DOI: 10.1021/jacsau.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024]
Abstract
CH/π interactions are prevalent among aromatic complexes and represent invaluable tools for stabilizing well-defined molecular architectures. Their energy contributions are exceptionally sensitive to various structural and environmental factors, resulting in a context-dependent nature that has led to conflicting findings in the scientific literature. Consequently, a universally accepted hierarchy for aromatic CH/π interactions has remained elusive. Herein, we present a comprehensive experimental investigation of aromatic CH/π complexes, employing a novel approach that involves isotopically labeled glyco-balances generated in situ. This innovative strategy not only allows us to uncover thermodynamic insights but also delves into the often less-accessible domain of kinetic information. Our analyses have yielded more than 180 new free energy values while considering key factors such as solvent properties, the interaction geometry, and the presence and nature of accompanying counterions. Remarkably, the obtained results challenge conventional wisdom regarding the stability order of common aromatic complexes. While it was believed that cationic CH/π interactions held the highest strength, followed by polarized CH/π, nonpolarized CH/π, and finally anionic CH/π interactions, our study reveals that this hierarchy can be subverted depending on the environment. Indeed, the performance of polarized CH/π interactions can match or even outcompete that of cationic CH/π interactions making them a more reliable stabilization strategy across the entire spectrum of solvent polarity. Overall, our results provide valuable guidelines for the selection of optimal interacting partners in every chemical environment, allowing the design of tailored aromatic complexes with applications in supramolecular chemistry, organocatalysis, and/or material sciences.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Alejandro Villacampa
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Basque
Researchand Technology Alliance (BRTA), CIC bioGUNE, 48170 Derio, Spain
- Basque
Foundation for Science, Ikerbasque, 48009 Bilbao, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Ana M. Gómez
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Andrés G. Santana
- Department
of Chemistry of Natural Products and Bioactive Synthetics, Instituto de Productos Naturales y Agrobiología
(IPNA-CSIC), San Cristóbal
de La Laguna, Santa Cruz de Tenerife 38206, Spain
| | - Juan Luis Asensio
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| |
Collapse
|
5
|
Averdunk C, Hanke K, Schatz D, Wegner HA. Molecular Wind-Up Meter for the Quantification of London Dispersion Interactions. Acc Chem Res 2024; 57:257-266. [PMID: 38131644 DOI: 10.1021/acs.accounts.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
ConspectusThe experimental quantification of interactions on the molecular level provides the necessary basis for the design of functional materials and chemical processes. The interplay of multiple parameters and the small quantity of individual interactions pose a special challenge for such endeavors. The common method is the use of molecular balances, which can exist in two different states. Thereby, a stabilizing interaction can occur in one of the states, favoring its formation and thus affecting the thermodynamic equilibrium of the system. One challenge is determining the change in this equilibrium since various analytical methods could not be applied to fast-changing equilibria. A new and promising method for quantifying molecular interactions is the use of Molecular Wind-up Meters (MWM) in which the change in kinetics, rather than the effect on thermodynamics, is investigated. An MWM is transformed with an energy input (e.g. irradiation) into a metastable state. Then, the rate of thermal transformation back to the ground state is measured. The strength of interactions present in the metastable state controls the kinetics of the back reactions, allowing direct correlation. The advantage of this approach lies in the high sensitivity (energy differences can be larger by 1 order of magnitude) and, in general, allows the use of a broader range of solvents and analytical methods. An Azobenzene-based MWM has been established as a powerful tool to quantify London dispersion interactions. London dispersion (LD) represents the attractive part of the van der Waals potential. Although neglected in the past due to its weak character, it has been shown that the influence of LD on the structure, stability, and reactivity of matter can be decisive. Especially in larger molecules, its energy contribution increases overproportionately with the number of atoms, which has sparked increasing interest in the use of so-called dispersion energy donors (DED) as a new structural element. Application of the azobenzene-based MWM not only allowed the differentiation of bulkiness, but also systematically addressed the influence of the length of n-alkyl chains. Additionally, the solvent influence on LD was studied. Based on the azobenzene MWM, an increment system has been proposed, allowing a rough estimate of the effect of a specific DED.
Collapse
Affiliation(s)
- Conrad Averdunk
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Kai Hanke
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center of Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
6
|
Storer MC, Hunter CA. The surface site interaction point approach to non-covalent interactions. Chem Soc Rev 2022; 51:10064-10082. [PMID: 36412990 DOI: 10.1039/d2cs00701k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The functional properties of molecular systems are generally determined by the sum of many weak non-covalent interactions, and therefore methods for predicting the relative magnitudes of these interactions is fundamental to understanding the relationship between function and structure in chemistry, biology and materials science. This review focuses on the Surface Site Interaction Point (SSIP) approach which describes molecules as a set of points that capture the properties of all possible non-covalent interactions that the molecule might make with another molecule. The first half of the review focuses on the empirical non-covalent interaction parameters, α and β, and provides simple rules of thumb to estimate free energy changes for interactions between different types of functional group. These parameters have been used to have been used to establish a quantitative understanding of the role of solvent in solution phase equilibria, and to describe non-covalent interactions at the interface between macroscopic surfaces as well as in the solid state. The second half of the review focuses on a computational approach for obtaining SSIPs and applications in multi-component systems where many different interactions compete. Ab initio calculation of the Molecular Electrostatic Potential (MEP) surface is used to derive an SSIP description of a molecule, where each SSIP is assigned a value equivalent to the corresponding empirical parameter, α or β. By considering the free energies of all possible pairing interactions between all SSIPs in a molecular ensemble, it is possible to calculate the speciation of all intermolecular interactions and hence predict thermodynamic properties using the SSIMPLE algorithm. SSIPs have been used to describe both the solution phase and the solid state and provide accurate predictions of partition coefficients, solvent effects on association constants for formation of intermolecular complexes, and the probability of cocrystal formation. SSIPs represent a simple and intuitive tool for describing the relationship between chemical structure and non-covalent interactions with sufficient accuracy to understand and predict the properties of complex molecular ensembles without the need for computationally expensive simulations.
Collapse
Affiliation(s)
- Maria Chiara Storer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
7
|
Meredith NY, Borsley S, Smolyar IV, Nichol GS, Baker CM, Ling KB, Cockroft SL. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed Engl 2022; 61:e202206604. [PMID: 35608961 PMCID: PMC9400978 DOI: 10.1002/anie.202206604] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/26/2022]
Abstract
The experimental isolation of H-bond energetics from the typically dominant influence of the solvent remains challenging. Here we use synthetic molecular balances to quantify amine/amide H-bonds in competitive solvents. Over 200 conformational free energy differences were determined using 24 H-bonding balances in 9 solvents spanning a wide polarity range. The correlations between experimental interaction energies and gas-phase computed energies exhibited wild solvent-dependent variation. However, excellent correlations were found between the same computed energies and the experimental data following empirical dissection of solvent effects using Hunter's α/β solvation model. In addition to facilitating the direct comparison of experimental and computational data, changes in the fitted donor and acceptor constants reveal the energetics of secondary local interactions such as competing H-bonds.
Collapse
Affiliation(s)
- Nicole Y. Meredith
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Stefan Borsley
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Ivan V. Smolyar
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Christopher M. Baker
- SyngentaJealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Kenneth B. Ling
- SyngentaJealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
8
|
Meredith NY, Borsley S, Smolyar IV, Nichol GS, Baker CM, Ling KB, Cockroft SL. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicole Y. Meredith
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Stefan Borsley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Ivan V. Smolyar
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Christopher M. Baker
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Kenneth B. Ling
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
9
|
Juraskova V, Celerse F, Laplaza R, Corminboeuf C. Assessing the persistence of chalcogen bonds in solution with neural network potentials. J Chem Phys 2022; 156:154112. [DOI: 10.1063/5.0085153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environment effects, which promote competing interactions and alter their static gas-phase properties. Recently, neural network potentials (NNPs) trained on Density Functional Theory (DFT) data have become increasingly popular to simulate molecular phenomena in condensed phase with an accuracy comparable to ab initio methods. To date, most applications have centered on solid-state materials or fairly simple molecules made of a limited number of elements. Herein, we focus on the persistence and strength of chalcogen bonds involving a benzotelluradiazole in condensed phase. While the tellurium-containing heteroaromatic molecules are known to exhibit pronounced interactions with anions and lone pairs of different atoms, the relevance of competing intermolecular interactions, notably with the solvent, is complicated to monitor experimentally but also challenging to model at an accurate electronic structure level. Here, we train direct and baselined NNPs to reproduce hybrid DFT energies and forces in order to identify what are the most prevalent non-covalent interactions occurring in a solute-Cl$^-$-THF mixture. The simulations in explicit solvent highlight competition with chalcogen bonds formed with the solvent and the short-range directionality of the interaction with direct consequences for the molecular properties in the solution. The comparison with other potentials (e.g., AMOEBA, direct NNP and continuum solvent model) also demonstrates that baselined NNPs offer a reliable picture of the non-covalent interaction interplay occurring in solution.
Collapse
|
10
|
Schümann JM, Wagner JP, Eckhardt AK, Quanz H, Schreiner PR. Intramolecular London Dispersion Interactions Do Not Cancel in Solution. J Am Chem Soc 2021; 143:41-45. [PMID: 33320651 DOI: 10.1021/jacs.0c09597] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present a comprehensive experimental study of a di-t-butyl-substituted cyclooctatetraene-based molecular balance to measure the effect of 16 different solvents on the equilibrium of folded versus unfolded isomers. In the folded 1,6-isomer, the two t-butyl groups are in close proximity (H···H distance ≈ 2.5 Å), but they are far apart in the unfolded 1,4-isomer (H···H distance ≈ 7 Å). We determined the relative strengths of these noncovalent intramolecular σ-σ interactions via temperature-dependent nuclear magnetic resonance measurements. The origins of the interactions were elucidated with energy decomposition analysis at the density functional and ab initio levels of theory, pinpointing the predominance of London dispersion interactions enthalpically favoring the folded state in any solvent measured.
Collapse
Affiliation(s)
- Jan M Schümann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - J Philipp Wagner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik Quanz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
11
|
Elmi A, Cockroft SL. Quantifying Interactions and Solvent Effects Using Molecular Balances and Model Complexes. Acc Chem Res 2021; 54:92-103. [PMID: 33315374 DOI: 10.1021/acs.accounts.0c00545] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Where the basic units of molecular chemistry are the bonds within molecules, supramolecular chemistry is based on the interactions that occur between molecules. Understanding the "how" and "why" of the processes that govern molecular self-assembly remains an open challenge to the supramolecular community. While many interactions are readily examined in silico through electronic structure calculations, such insights may not be directly applicable to experimentalists. The practical limitations of computationally accounting for solvation is perhaps the largest bottleneck in this regard, with implicit solvation models failing to comprehensively account for the specific nature of solvent effects and explicit models incurring a prohibitively high computational cost. Since molecular recognition processes usually occur in solution, insight into the nature and effect of solvation is imperative not only for understanding these phenomena but also for the rational design of systems that exploit them.Molecular balances and supramolecular complexes have emerged as useful tools for the experimental dissection of the physicochemical basis of various noncovalent interactions, but they have historically been underexploited as a platform for the evaluation of solvent effects. Contrasting with large biological complexes, smaller synthetic model systems enable combined experimental and computational analyses, often facilitating theoretical analyses that can work in concert with experiment.Our research has focused on the development of supramolecular systems to evaluate the role of solvents in molecular recognition, and further characterize the underlying mechanisms by which molecules associate. In particular, the use of molecular balances has provided a framework to measure the magnitude of solvent effects and to examine the accuracy of solvent models. Such approaches have revealed how solvation can modulate the electronic landscape of a molecule and how competitive solvation and solvent cohesion can provide thermodynamic driving forces for association. Moreover, the use of simple model systems facilitates the interrogation and further dissection of the physicochemical origins of molecular recognition. This tandem experimental/computational approach has married less common computational techniques, like symmetry adapted perturbation theory (SAPT) and natural bonding orbital (NBO) analysis, with experimental observations to elucidate the influence of effects that are difficult to resolve experimentally (e.g., London dispersion and electron delocalization).
Collapse
Affiliation(s)
- Alex Elmi
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
12
|
Burns RJ, Mati IK, Muchowska KB, Adam C, Cockroft SL. Quantifying Through-Space Substituent Effects. Angew Chem Int Ed Engl 2020; 59:16717-16724. [PMID: 32542910 PMCID: PMC7540488 DOI: 10.1002/anie.202006943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 01/12/2023]
Abstract
The description of substituents as electron donating or withdrawing leads to a perceived dominance of through-bond influences. The situation is compounded by the challenge of separating through-bond and through-space contributions. Here, we probe the experimental significance of through-space substituent effects in molecular interactions and reaction kinetics. Conformational equilibrium constants were transposed onto the Hammett substituent constant scale revealing dominant through-space substituent effects that cannot be described in classic terms. For example, NO2 groups positioned over a biaryl bond exhibited similar influences as resonant electron donors. Meanwhile, the electro-enhancing influence of OMe/OH groups could be switched off or inverted by conformational twisting. 267 conformational equilibrium constants measured across eleven solvents were found to be better predictors of reaction kinetics than calculated electrostatic potentials, suggesting utility in other contexts and for benchmarking theoretical solvation models.
Collapse
Affiliation(s)
- Rebecca J. Burns
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ioulia K. Mati
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Kamila B. Muchowska
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Catherine Adam
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
13
|
Yamada M, Narita H, Maeda Y. A Fullerene‐Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C
60
Surface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Michio Yamada
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| | - Haruna Narita
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| | - Yutaka Maeda
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| |
Collapse
|
14
|
Yamada M, Narita H, Maeda Y. A Fullerene-Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C 60 Surface. Angew Chem Int Ed Engl 2020; 59:16133-16140. [PMID: 32458522 DOI: 10.1002/anie.202005888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/12/2022]
Abstract
To investigate the nature and strength of noncovalent interactions at the fullerene surface, molecular torsion balances consisting of C60 and organic moieties connected through a biphenyl linkage were synthesized. NMR and computational studies show that the unimolecular system remains in equilibrium between well-defined folded and unfolded conformers owing to restricted rotation around the biphenyl C-C bond. The energy differences between the two conformers depend on the substituents and is ascribed to differences in the intramolecular noncovalent interactions between the organic moieties and the fullerene surface. Fullerenes favor interacting with the π-faces of benzenes bearing electron-donating substituents. The correlation between the folding free energies and corresponding Hammett constants of the substituents in the arene-containing torsion balances reflects the contributions of the electrostatic interactions and dispersion force to face-to-face arene-fullerene interactions.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| | - Haruna Narita
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| | - Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| |
Collapse
|
15
|
Muchowska KB, Pascoe DJ, Borsley S, Smolyar IV, Mati IK, Adam C, Nichol GS, Ling KB, Cockroft SL. Reconciling Electrostatic and n→π* Orbital Contributions in Carbonyl Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kamila B. Muchowska
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Dominic J. Pascoe
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Stefan Borsley
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Ivan V. Smolyar
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Ioulia K. Mati
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Catherine Adam
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Kenneth B. Ling
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
16
|
Muchowska KB, Pascoe DJ, Borsley S, Smolyar IV, Mati IK, Adam C, Nichol GS, Ling KB, Cockroft SL. Reconciling Electrostatic and n→π* Orbital Contributions in Carbonyl Interactions. Angew Chem Int Ed Engl 2020; 59:14602-14608. [PMID: 32485046 PMCID: PMC7496118 DOI: 10.1002/anie.202005739] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Interactions between carbonyl groups are prevalent in protein structures. Earlier investigations identified dominant electrostatic dipolar interactions, while others implicated lone pair n→π* orbital delocalisation. Here these observations are reconciled. A combined experimental and computational approach confirmed the dominance of electrostatic interactions in a new series of synthetic molecular balances, while also highlighting the distance-dependent observation of inductive polarisation manifested by n→π* orbital delocalisation. Computational fiSAPT energy decomposition and natural bonding orbital analyses correlated with experimental data to reveal the contexts in which short-range inductive polarisation augment electrostatic dipolar interactions. Thus, we provide a framework for reconciling the context dependency of the dominance of electrostatic interactions and the occurrence of n→π* orbital delocalisation in C=O⋅⋅⋅C=O interactions.
Collapse
Affiliation(s)
- Kamila B. Muchowska
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Dominic J. Pascoe
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Stefan Borsley
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ivan V. Smolyar
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ioulia K. Mati
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Catherine Adam
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Kenneth B. Ling
- SyngentaJealott's Hill International Research CentreBracknellBerkshireRG42 6EYUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryThe University of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
17
|
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| |
Collapse
|
18
|
Burns RJ, Mati IK, Muchowska KB, Adam C, Cockroft SL. Quantifying Through‐Space Substituent Effects. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rebecca J. Burns
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Ioulia K. Mati
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Kamila B. Muchowska
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Catherine Adam
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
19
|
Loeffler JR, Schauperl M, Liedl KR. Hydration of Aromatic Heterocycles as an Adversary of π-Stacking. J Chem Inf Model 2019; 59:4209-4219. [PMID: 31566975 PMCID: PMC7032848 DOI: 10.1021/acs.jcim.9b00395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydration is one of the key players in the protein-ligand binding process. It not only influences the binding process per se, but also the drug's absorption, distribution, metabolism, and excretion properties. To gain insights into the hydration of aromatic cores, the solvation thermodynamics of 40 aromatic mono- and bicyclic systems, frequently occurring in medicinal chemistry, are investigated. Thermodynamics is analyzed with two different methods: grid inhomogeneous solvation theory (GIST) and thermodynamic integration (TI). Our results agree well with previously published experimental and computational solvation free energies. The influence of adding heteroatoms to aromatic systems and how the position of these heteroatoms impacts the compound's interactions with water is studied. The solvation free energies of these heteroaromatics are highly correlated to their gas phase interaction energies with benzene: compounds showing a high interaction energy also have a high solvation free energy value. Therefore, replacing a compound with one having a higher gas phase interaction energy might not result in the expected improvement in affinity. The desolvation costs counteract the higher stacking interactions, hence weakening or even inverting the expected gain in binding free energy.
Collapse
Affiliation(s)
- Johannes R Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, and Center of Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Tyrol , Austria
| | - Michael Schauperl
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92039-0736 , United States
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center of Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Tyrol , Austria
| |
Collapse
|
20
|
Aliev AE, Motherwell WB. Some Recent Advances in the Design and Use of Molecular Balances for the Experimental Quantification of Intramolecular Noncovalent Interactions of π Systems. Chemistry 2019; 25:10516-10530. [DOI: 10.1002/chem.201900854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/09/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Abil E. Aliev
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - William B. Motherwell
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
21
|
Zheng H, Ye H, Yu X, You L. Interplay between n→π* Interactions and Dynamic Covalent Bonds: Quantification and Modulation by Solvent Effects. J Am Chem Soc 2019; 141:8825-8833. [PMID: 31075197 DOI: 10.1021/jacs.9b01006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orbital donor-acceptor interactions play critical roles throughout chemistry, and hence, their regulation and functionalization are of great significance. Herein we demonstrate for the first time the investigation of n→π* interactions through the strategy of dynamic covalent chemistry (DCC), and we further showcase its use in the stabilization of imine. The n→π* interaction between donor X and acceptor aldehyde/imine within 2-X-2'-formylbiphenyl derivatives was found to significantly influence the thermodynamics of imine exchange. The orbital interaction was then quantified through imine exchange, the equilibrium of which was successfully correlated with the difference in natural bond orbital stabilization energy of n→π* interactions of aldehyde and its imine. Moreover, the examination of solvent effects provided insights into the distinct feature of the modulation of n→π* interaction with aprotic and protic solvents. The n→π* interaction involving imine was enhanced in protic solvents due to hydrogen bonding with the solvent. This finding further enabled the stabilization of imine in purely aqueous solution. The strategies and results reported should find application in many fields, including molecular recognition, biological labeling, and asymmetric catalysis.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China.,College of Chemistry and Material Science , Fujian Normal University , Fuzhou 350007 China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese of Academy of Sciences , Beijing 100049 , China
| | - Xiaoxia Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China.,College of Chemistry and Material Science , Fujian Normal University , Fuzhou 350007 China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese of Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
22
|
Morisue M, Ueno I. Preferential Solvation Unveiled by Anomalous Conformational Equilibration of Porphyrin Dimers: Nucleation Growth of Solvent–Solvent Segregation. J Phys Chem B 2018; 122:5251-5259. [DOI: 10.1021/acs.jpcb.8b02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mitsuhiko Morisue
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ikuya Ueno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
23
|
Emenike BU, Spinelle RA, Rosario A, Shinn DW, Yoo B. Solvent Modulation of Aromatic Substituent Effects in Molecular Balances Controlled by CH−π Interactions. J Phys Chem A 2018; 122:909-915. [DOI: 10.1021/acs.jpca.7b09910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bright U. Emenike
- Department of Chemistry, State of University of New York, Old Westbury, New York 11568, United States
| | - Ronald A. Spinelle
- Department of Chemistry, State of University of New York, Old Westbury, New York 11568, United States
| | - Ambar Rosario
- Department of Chemistry, State of University of New York, Old Westbury, New York 11568, United States
| | - David W. Shinn
- Department of Math and Science, U.S. Merchant Marine Academy, Kings
Point, New York 11024, United States
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| |
Collapse
|
24
|
Henkel S, Misuraca MC, Troselj P, Davidson J, Hunter CA. Polarisation effects on the solvation properties of alcohols. Chem Sci 2018; 9:88-99. [PMID: 29629077 PMCID: PMC5875020 DOI: 10.1039/c7sc04890d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Abstract
Alcohol solvents are significantly more polar than expected based on the measured H-bonding properties of monomeric alcohols in dilute solution. Self-association of alcohols leads to formation of cyclic aggregates and linear polymeric chains that have a different polarity from the alcohol monomer. Cyclic aggregates are less polar than the monomer, and the chain ends of linear polymers are more polar. The solvation properties of alcohols therefore depend on the interplay of these self-association equilibria and the equilibria involving interactions with solutes. Twenty-one different molecular recognition probes of varying polarity were used to probe the solvation properties of alkane-alcohol mixtures across a wide range of different solvent compositions. The results allow dissection of the complex equilibria present in these systems. Formation of a H-bond between two alcohol molecules leads to polarisation of the hydroxyl groups, resulting in an increase in binding affinity for subsequent interactions with the unbound donor and acceptor sites. The H-bond donor parameter (α) for these sites increases from 2.7 to 3.5, and the H-bond acceptor parameter (β) increases from 5.3 to 6.9. Polarisation is a short range effect limited to the first H-bond in a chain, and formation of subsequent H-bonds in longer chains does not further increase the polarity of chain ends. H-bond donor sites involved in a H-bond are unavailable for further interactions, because the formation of a bifurcated three-centre H-bond is three orders of magnitude less favourable than formation of a conventional two-centre H-bond. These findings are reproduced by quantum chemical calculations of the molecular electrostatic potential surfaces of alcohol aggregates. Thus, the overall solvation properties of alcohols depend on the speciation of different aggregates, the polarities of these species and the polarities of the solutes. At low alcohol concentrations, polar solutes are solvated by alcohol monomers, and at higher alcohol concentrations, solutes are solvated by the more polar chain ends of linear polymers. The less polar cyclic aggregates are less important for interactions with solutes. Similar behavior was found for ten different alcohol solvents. Tertiary alcohols are marginally less polar solvents than primary alcohols, due to steric interactions that destabilises the formation of polymeric aggregates leading to lower concentrations of polar chain ends. One alcohol with an electron-withdrawing substituent was studied, and this solvent showed slightly different behavior, because the H-bond donor and acceptor properties are different.
Collapse
Affiliation(s)
- Stefan Henkel
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Maria Cristina Misuraca
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Pavle Troselj
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Jonathan Davidson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
25
|
Motherwell WB, Moreno RB, Pavlakos I, Arendorf JRT, Arif T, Tizzard GJ, Coles SJ, Aliev AE. Noncovalent Interactions of π Systems with Sulfur: The Atomic Chameleon of Molecular Recognition. Angew Chem Int Ed Engl 2017; 57:1193-1198. [DOI: 10.1002/anie.201708485] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/16/2017] [Indexed: 12/24/2022]
Affiliation(s)
- William B. Motherwell
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Rafael B. Moreno
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Ilias Pavlakos
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | | | - Tanzeel Arif
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Graham J. Tizzard
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Simon J. Coles
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Abil E. Aliev
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
26
|
Motherwell WB, Moreno RB, Pavlakos I, Arendorf JRT, Arif T, Tizzard GJ, Coles SJ, Aliev AE. Noncovalent Interactions of π Systems with Sulfur: The Atomic Chameleon of Molecular Recognition. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- William B. Motherwell
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Rafael B. Moreno
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Ilias Pavlakos
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | | | - Tanzeel Arif
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| | - Graham J. Tizzard
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Simon J. Coles
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Abil E. Aliev
- Department of Chemistry; University College London; 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
27
|
Pascoe DJ, Ling KB, Cockroft SL. The Origin of Chalcogen-Bonding Interactions. J Am Chem Soc 2017; 139:15160-15167. [PMID: 28985065 DOI: 10.1021/jacs.7b08511] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Favorable molecular interactions between group 16 elements have been implicated in catalysis, biological processes, and materials and medicinal chemistry. Such interactions have since become known as chalcogen bonds by analogy to hydrogen and halogen bonds. Although the prevalence and applications of chalcogen-bonding interactions continues to develop, debate still surrounds the energetic significance and physicochemical origins of this class of σ-hole interaction. Here, synthetic molecular balances were used to perform a quantitative experimental investigation of chalcogen-bonding interactions. Over 160 experimental conformational free energies were measured in 13 different solvents to examine the energetics of O···S, O···Se, S···S, O···HC, and S···HC contacts and the associated substituent and solvent effects. The strongest chalcogen-bonding interactions were found to be at least as strong as conventional H-bonds, but unlike H-bonds, surprisingly independent of the solvent. The independence of the conformational free energies on solvent polarity, polarizability, and H-bonding characteristics showed that electrostatic, solvophobic, and van der Waals dispersion forces did not account for the observed experimental trends. Instead, a quantitative relationship between the experimental conformational free energies and computed molecular orbital energies was consistent with the chalcogen-bonding interactions being dominated by n → σ* orbital delocalization between a lone pair (n) of a (thio)amide donor and the antibonding σ* orbital of an acceptor thiophene or selenophene. Interestingly, stabilization was manifested through the same acceptor molecular orbital irrespective of whether a direct chalcogen···chalcogen or chalcogen···H-C contact was made. Our results underline the importance of often-overlooked orbital delocalization effects in conformational control and molecular recognition phenomena.
Collapse
Affiliation(s)
- Dominic J Pascoe
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Kenneth B Ling
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
28
|
|
29
|
|
30
|
Dominelli‐Whiteley N, Brown JJ, Muchowska KB, Mati IK, Adam C, Hubbard TA, Elmi A, Brown AJ, Bell IAW, Cockroft SL. Strong Short-Range Cooperativity in Hydrogen-Bond Chains. Angew Chem Int Ed Engl 2017; 56:7658-7662. [PMID: 28493462 PMCID: PMC5488241 DOI: 10.1002/anie.201703757] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Chains of hydrogen bonds such as those found in water and proteins are often presumed to be more stable than the sum of the individual H bonds. However, the energetics of cooperativity are complicated by solvent effects and the dynamics of intermolecular interactions, meaning that information on cooperativity typically is derived from theory or indirect structural data. Herein, we present direct measurements of energetic cooperativity in an experimental system in which the geometry and the number of H bonds in a chain were systematically controlled. Strikingly, we found that adding a second H-bond donor to form a chain can almost double the strength of the terminal H bond, while further extensions have little effect. The experimental observations add weight to computations which have suggested that strong, but short-range cooperative effects may occur in H-bond chains.
Collapse
Affiliation(s)
- Nicholas Dominelli‐Whiteley
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - James J. Brown
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Kamila B. Muchowska
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ioulia K. Mati
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Catherine Adam
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Thomas A. Hubbard
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Alex Elmi
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | | | - Ian A. W. Bell
- Afton Chemical LimitedLondon RoadBracknellBerkshireRG12 2UWUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of Edinburgh, Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
31
|
Dominelli-Whiteley N, Brown JJ, Muchowska KB, Mati IK, Adam C, Hubbard TA, Elmi A, Brown AJ, Bell IAW, Cockroft SL. Strong Short-Range Cooperativity in Hydrogen-Bond Chains. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas Dominelli-Whiteley
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - James J. Brown
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Kamila B. Muchowska
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Ioulia K. Mati
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Catherine Adam
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Thomas A. Hubbard
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | - Alex Elmi
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| | | | - Ian A. W. Bell
- Afton Chemical Limited; London Road Bracknell Berkshire RG12 2UW UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry; University of Edinburgh, Joseph Black Building; David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
32
|
Hubbard TA, Brown AJ, Bell IAW, Cockroft SL. The Limit of Intramolecular H-Bonding. J Am Chem Soc 2016; 138:15114-15117. [DOI: 10.1021/jacs.6b09130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Alisdair J. Brown
- Afton Chemical Limited, London Road, Bracknell, Berkshire RG12 2UW, U.K
| | - Ian A. W. Bell
- Afton Chemical Limited, London Road, Bracknell, Berkshire RG12 2UW, U.K
| | | |
Collapse
|
33
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
34
|
Emenike BU, Bey SN, Spinelle RA, Jones JT, Yoo B, Zeller M. Cationic CH⋯π interactions as a function of solvation. Phys Chem Chem Phys 2016; 18:30940-30945. [DOI: 10.1039/c6cp06800f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The energy of a cationic CH⋯π interaction was measured as a function of solvation using molecular torsion balances.
Collapse
Affiliation(s)
- Bright U. Emenike
- Department of Chemistry & Physics
- State University of New York
- Old Westbury
- USA
| | - Sara N. Bey
- Department of Chemistry & Physics
- State University of New York
- Old Westbury
- USA
| | - Ronald A. Spinelle
- Department of Chemistry & Physics
- State University of New York
- Old Westbury
- USA
| | - Jacob T. Jones
- Department of Chemistry & Physics
- State University of New York
- Old Westbury
- USA
| | - Barney Yoo
- Department of Chemistry
- Hunter College
- City University of New York
- New York
- USA
| | | |
Collapse
|
35
|
Emenike BU, Bey SN, Bigelow BC, Chakravartula SVS. Quantitative model for rationalizing solvent effect in noncovalent CH-Aryl interactions. Chem Sci 2015; 7:1401-1407. [PMID: 29910898 PMCID: PMC5975927 DOI: 10.1039/c5sc03550c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/17/2015] [Indexed: 11/21/2022] Open
Abstract
Establishing a linear relationship between CH–aryl interaction energies and the properties of the solvating media.
The strength of CH–aryl interactions (ΔG) in 14 solvents was determined via the conformational analysis of a molecular torsion balance. The molecular balance adopted folded and unfolded conformers in which the ratio of the conformers in solution provided a quantitative measure of ΔG as a function of solvation. While a single empirical solvent parameter based on solvent polarity failed to explain solvent effect in the molecular balance, it is shown that these ΔG values can be correlated through a multiparameter linear solvation energy relationship (LSER) using the equation introduced by Kamlet and Taft. The resulting LSER equation [ΔG = –0.24 + 0.23α – 0.68β – 0.1π* + 0.09δ]—expresses ΔG as a function of Kamlet–Taft solvent parameters—revealed that specific solvent effects (α and β) are mainly responsible for “tipping” the molecular balance in favour of one conformer over the other, where α represents a solvents' hydrogen-bond acidity and β represents a solvents' hydrogen-bond basicity. Furthermore, using extrapolated data (α and β) and the known π* value for the gas phase, the LSER equation predicted ΔG in the gas phase to be –0.31 kcal mol–1, which agrees with –0.35 kcal mol–1 estimated from DFT-D calculations.
Collapse
Affiliation(s)
- Bright U Emenike
- Department of Chemistry & Physics , State University of New York , 223 Store Hill Road, Old Westbury , NY 11568 , USA .
| | - Sara N Bey
- Department of Chemistry & Physics , State University of New York , 223 Store Hill Road, Old Westbury , NY 11568 , USA .
| | - Brianna C Bigelow
- Department of Chemistry & Physics , State University of New York , 223 Store Hill Road, Old Westbury , NY 11568 , USA .
| | - Srinivas V S Chakravartula
- Department of Chemistry & Biochemistry , Hunter College Graduation Center , City University of New York , 695 Park Avenue New York , NY 10065 , USA
| |
Collapse
|
36
|
Yang L, Adam C, Cockroft SL. Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions. J Am Chem Soc 2015; 137:10084-7. [DOI: 10.1021/jacs.5b05736] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lixu Yang
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Catherine Adam
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
37
|
Pavlakos I, Arif T, Aliev AE, Motherwell WB, Tizzard GJ, Coles SJ. Noncovalent Lone Pair⋅⋅⋅(No-π!)-Heteroarene Interactions: The Janus-Faced Hydroxy Group. Angew Chem Int Ed Engl 2015; 54:8169-74. [DOI: 10.1002/anie.201502103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/10/2022]
|
38
|
Pavlakos I, Arif T, Aliev AE, Motherwell WB, Tizzard GJ, Coles SJ. Noncovalent Lone Pair⋅⋅⋅(No-π!)-Heteroarene Interactions: The Janus-Faced Hydroxy Group. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Ruzziconi R, Lepri S, Buonerba F, Schlosser M, Mancinelli M, Ranieri S, Prati L, Mazzanti A. Long-Range Bonding/Nonbonding Interactions: A Donor–Acceptor Resonance Studied by Dynamic NMR. Org Lett 2015; 17:2740-3. [DOI: 10.1021/acs.orglett.5b01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renzo Ruzziconi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 10, I-06100 Perugia, Italy
| | - Susan Lepri
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 10, I-06100 Perugia, Italy
| | - Federica Buonerba
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 10, I-06100 Perugia, Italy
| | - Manfred Schlosser
- Institute
of Chemical Sciences, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
| | - Michele Mancinelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Silvia Ranieri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Luca Prati
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Andrea Mazzanti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
40
|
Adam C, Yang L, Cockroft SL. Partitioning Solvophobic and Dispersion Forces in Alkyl and Perfluoroalkyl Cohesion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Adam C, Yang L, Cockroft SL. Partitioning Solvophobic and Dispersion Forces in Alkyl and Perfluoroalkyl Cohesion. Angew Chem Int Ed Engl 2014; 54:1164-7. [DOI: 10.1002/anie.201408982] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/07/2022]
|
42
|
Aliev AE, Arendorf JRT, Pavlakos I, Moreno RB, Porter MJ, Rzepa HS, Motherwell WB. Surfing π Clouds for Noncovalent Interactions: Arenes versus Alkenes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Aliev AE, Arendorf JRT, Pavlakos I, Moreno RB, Porter MJ, Rzepa HS, Motherwell WB. Surfing π Clouds for Noncovalent Interactions: Arenes versus Alkenes. Angew Chem Int Ed Engl 2014; 54:551-5. [DOI: 10.1002/anie.201409672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 11/07/2022]
|
44
|
Gardarsson H, Schweizer WB, Trapp N, Diederich F. Structures and Properties of Molecular Torsion Balances to Decipher the Nature of Substituent Effects on the Aromatic Edge-to-Face Interaction. Chemistry 2014; 20:4608-16. [DOI: 10.1002/chem.201304810] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 11/10/2022]
|