1
|
Jiang X, Zhang D, Wang Y, Wang R, Kong XZ, Zhu X, Li S, Gu X. Facile Preparation of Raspberry-Like SiO 2@Polyurea Microspheres with Tunable Wettability and Their Application for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57672-57686. [PMID: 39380485 DOI: 10.1021/acsami.4c12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry-like microspheres have been widely used as superhydrophobic materials, photonic crystals, drug carriers, etc. Nevertheless, their preparation methods, usually consisting of multiple steps, are generally time- and energy-consuming. Herein raspberry-like SiO2@polyurea microspheres (SiO2@PUM) are readily prepared via a one-step precipitation polymerization of isophorone diisocyanate in a H2O/acetone mixture with the presence of SiO2 particles. The sphere size, surface roughness, and SiO2 content of SiO2@PUM are easily adjustable by varying the experimental conditions. TEM and SEM observations reveal that the final SiO2@PUM exhibits a core-shell structure, with polyurea (PU) in the core and SiO2 particles as the shell. In the process, the SiO2 particles were initially located on the PUM surface as a monolayer. With the reaction proceeding, the monolayer of SiO2 particles became thicker, forming a thicker layer of SiO2 particles on PUM due to the accumulation of SiO2 particles, leading to a multilayer structure of SiO2 particles on the shell of SiO2@PUM. The formation mechanism of the raspberry-like SiO2@PUM was thoroughly discussed and ascribed to electrostatic attraction between the positively charged PU and negatively charged SiO2 particles. Once dried, SiO2@PUM was superhydrophobic and turned hydrophilic if water-wetted. Using a layer of SiO2@PUM, effective separation with good reusability for a variety of oil-water mixtures was achieved regardless of the oil density and types of oil-water emulsions. This work presents a novel protocol for the preparation of raspberry-like microspheres with tunable wettability via a rapid and green process, and the resulting microspheres are highly effective for the separation of diverse types of oil-water mixtures.
Collapse
Affiliation(s)
- Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Diankai Zhang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujun Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Ruiqing Wang
- Department of Basic Courses, Shandong Shenghan Finance and Trade Vocational College, Jinan 250316, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Health and Medicine, Dezhou University, Dezhou 253023, China
| |
Collapse
|
2
|
Yang T, Jiang C, Zhang L, Du Y, Fan J, Zhang L, Liang F. Waterproof and Flame-Retardant Fabric Coating with Nail-Tie Structure was Constructed by Janus Particles with Strong Mechanical, Physical, and Chemical Durability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54166-54175. [PMID: 37943181 DOI: 10.1021/acsami.3c12590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Oil spills are one of the most dangerous sources that cause serious environmental pollution and fire and explosion. In this work, multifunctional separator silica@polydivinylbenzene/poly 2,6-dimethyl-1, 4-phenyl ether (silica@PDVB/PPE) Janus particles were fabricated via seed emulsion polymerization, causing phase segregation as well as selective modification. The epoxy modified silica is partially covalently bonded to the fabric substrate surface by simple spraying to achieve a strong composite coating. The low surface energy PDVB/PPE forms a micronano rough layered surface, which can achieve a super hydrophobic and lipophile surface (WCA = 155°) and obtain a high flux separation of water and oil at 32,700 L·m-2·h-1. At the same time, the Janus composite fabric coating has the advantages of high heat resistance and flame retardant, which is realized by halogen-free flame-retardant unsaturated polyphosphate (PPE), making Janus fabric have potential value in separating oil-water mixtures and fire protection applications. In addition, the coating shows excellent chemical durability. After soaking in various aqueous solvents and organic solvents for 30 h, it can still maintain superhydrophobicity and flame retardant. The coating still has water repellency and flame retardant after 50 washings and mechanical wear and has good mechanical durability.
Collapse
Affiliation(s)
- Tiantian Yang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Chengzhen Jiang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Linnan Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yi Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiangtao Fan
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Sciene and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Parvate S, Chattopadhyay S. Complex Polymeric Microstructures with Programmable Architecture via Pickering Emulsion-Templated In Situ Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1406-1421. [PMID: 35051332 DOI: 10.1021/acs.langmuir.1c02572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aside from smooth and spherical microcapsules, the concept of tailoring complex polymeric microstructures is being taken a step ahead due to their great demand in various applications and fundamental studies in the subjects of microfluidics and nanotechnology. Size, shape, and morphology are of paramount importance for their functional performance and various applications. However, simple, inexpensive, versatile, and high-throughput techniques for fabricating microcapsules with controlled morphology remain a bottleneck for discoveries in the subject of polymer colloids. In this paper, we directly fulfill this need by reporting a novel approach of Pickering emulsion-templated in situ polymerization for tailoring complex polymeric microstructures comprised of a composite shell of titanium dioxide nanoparticle (TiO2 NP)-embedded poly(melamine-urea-formaldehyde) (polyMUF) and a core of hexadecane (HD, soft template). At first, we hydrophobize TiO2 NPs by chemisorbing long-chain biobased myristic acid via a bidentate chelating complex and precisely tune their wettability by varying the grafting density of myristic acid to obtain highly stable oil-in-water (O/W) Pickering emulsion. Thereafter, we employ the optimized TiO2 NPs in the intended encapsulation strategy that enables various microstructures and morphologies with the particle diameter ranging from 5 to 20 μm. Careful manipulation of reaction parameters and copolymer components leads to novel complex microstructures: smooth, raspberry-like, partially budded, hollow, filled, single-holed, and closed-cell-like microstructures. Particle properties such as morphology, size, shell thickness, and core content are governed by the TiO2 NP content, core-to-shell ratio, copolymer component, conversion, and pH value. Based on the results of a series of control experiments, novel mechanisms for the formation of various such microstructures are proposed.
Collapse
Affiliation(s)
- Sumit Parvate
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur 247001, India
| | - Sujay Chattopadhyay
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur 247001, India
| |
Collapse
|
4
|
Yang T, Li Y, Gui H, Du D, Du Y, Song XM, Liang F. Superhydrophobic Coating Derived from the Spontaneous Orientation of Janus Particles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25392-25399. [PMID: 34008938 DOI: 10.1021/acsami.1c05571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A superhydrophobic surface was achieved using a monolayer of the perpendicularly oriented epoxy-silica@polydivinylbenzene (PDVB) Janus particles (JPs) on an epoxy resin substrate. The epoxy-silica@PDVB JPs were synthesized from the silica@PDVB/polystyrene (PS) JPs through selective etching of the PDVB/PS belly and the surface modification of the silica part. The modified silica parts can be covalently bonded with the epoxy resin to make the perpendicular orientation spontaneous as well as the coating more robust. The outward PDVB bellies can constitute the micro-/nanoscale hierarchical structures for the superhydrophobic property. The superhydrophobic coating exhibits water repellence and self-cleaning properties. Moreover, the coating exhibits good chemical durability that it can keep the superhydrophobic property after long-time immersion in various aqueous solutions and organic solvents. The coating is still superhydrophobic after water flushing and mechanical wearing, showing the perfect mechanical durability.
Collapse
Affiliation(s)
- Tiantian Yang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yi Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Peng B, Liu Y, Aarts DGAL, Dullens RPA. Stabilisation of hollow colloidal TiO 2 particles by partial coating with evenly distributed lobes. SOFT MATTER 2021; 17:1480-1486. [PMID: 33496306 PMCID: PMC8778591 DOI: 10.1039/d0sm02100h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Photo-catalytically active crystalline TiO2 has attracted special attention due to its relevance for renewable energy and is typically obtained by the calcination of amorphous TiO2. However, stabilising hollow colloidal TiO2 particles against aggregation during calcination without compromising their photocatalytic activity poses two conflicting demands: to be stable their surface needs to be coated, while efficient photocatalysis requires an exposed TiO2 surface. Here, this incompatibility is resolved by partially coating TiO2 shells with evenly distributed 3-trimethoxysilyl propyl methacrylate (TPM) lobes. These lobes act both as steric barriers and surface charge enhancers that efficiently stabilise the TiO2 shells against aggregation during calcination. The morphology of the TPM lobes and their coverage, and the associated particle stability during the calcination-induced TiO2 crystallization, can be controlled by the pH and the contact angle between TPM and TiO2. The crystal structure and the grain size of the coated TiO2 shells are controlled by varying the calcination temperature, which allows tuning their photocatalytic activity. Finally, the durable photocatalytic activity over many usage cycles of the coated TiO2 compared to uncoated shells is demonstrated in a simple way by measuring the photo-degradation of a fluorescent dye. Our approach offers a general strategy for stabilising colloidal materials, without compromising access to their active surfaces.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
- Department of Applied Physics, Aalto University, Espoo FI-00076, Finland.
| | - Yanyan Liu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
6
|
Yan P, Zhang X, Wang X, Zhang X. Controllable Preparation of Monodisperse Mesoporous Silica from Microspheres to Microcapsules and Catalytic Loading of Au Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5271-5279. [PMID: 32306735 DOI: 10.1021/acs.langmuir.0c00629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A unique structural transition from pomegranate-like monodisperse mesoporous silica microspheres (M-MSMs) with tunable mesopores to mesoporous silica microcapsules has been reported. The unique evolution occurred together with varying the cross-linking degrees (CLDs) of templates. Herein, using monodisperse sulfonated cross-linked polystyrene (S-CLPS) as templates, S-CLPS/SiO2 composite microspheres were synthesized by the sol-gel method. Subsequently, the templates were removed by calcination to obtain the M-MSMs or microcapsules. The pore sizes of M-MSMs could be tailored from 3.2 to 7.4 nm by facilely varying the CLDs from 0.5 to 20%. Interestingly, mesoporous silica microcapsules were gradually formed when the CLDs were beyond 20%. Meanwhile, the specific surface area also could be adjusted by this strategy without hardly affecting the monodispersity, and the specific surface area increased to 391.9 m2/g. Significantly, Au@M-MSM was prepared by supporting Au nanoparticles (NPs) on M-MSM and used as nanocatalysts to reduce 4-nitrophenol (4-NP). The ultrathin shell and interconnected three-dimensional (3D) porous structure of M-MSMs can increase the mass transfer and protect the Au NPs from leakage, which reveals high recyclability and high conversion (>95%) after 10 regeneration-catalysis cycles. This approach provides a nanotechnology platform for the preparation of mesoporous silica materials with different microstructures, which will have enormous potential in practical applications involving different molecular sizes.
Collapse
Affiliation(s)
- Panyu Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xinchao Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiaomei Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
7
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
8
|
Mackiewicz M, Romanski J, Drabczyk K, Waleka E, Stojek Z, Karbarz M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. Int J Pharm 2019; 569:118589. [PMID: 31386880 DOI: 10.1016/j.ijpharm.2019.118589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
Abstract
Polymer microcapsules offer a possibility of storing increased amounts of drugs. Appropriate design and composition of the microcapsules allow tuning of the drug-release process. In this paper, we report on synthesis of hydrogel microcapsules sensitive to temperature and pH and degradable by glutathione and hydrogen peroxide. Microcapsules were based on thermo-responsive poly(N-isopropylacrylamide) and degradable cystine crosslinker, and were synthesized by applying precipitation polymerization. Such way of polymerization was appropriately modified to limit the crosslinking in the microcapsule center. This led to a possibility of washing out the pNIPA core at room temperature and the formation of a capsule. Microcapsules revealed rather high drug-loading capacity of ca. 17%. The degradation of the microcapsules by the reducing agent (GSH) and the oxidizing agent (H2O2) was confirmed by using the DLS, UV-Vis, SEM and TEM techniques. Depending on pH and concentration of the reducing/oxidizing agents a fast or slow degradation of the microcapsules and a burst or long-term release of doxorubicin (DOX) were observed. The DOX loaded microcapsules appeared to be cytotoxic against A2780 cancer cells similarly to DOX alone, while unloaded microcapsules did not inhibit proliferation of the cells.
Collapse
Affiliation(s)
- Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Jan Romanski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Kinga Drabczyk
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Ewelina Waleka
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Av., PL 00-664 Warsaw, Poland
| | - Zbigniew Stojek
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, 101 Żwirki i Wigury Av., PL 02-089 Warsaw, Poland.
| |
Collapse
|
9
|
Wichaita W, Polpanich D, Tangboriboonrat P. Review on Synthesis of Colloidal Hollow Particles and Their Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02330] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waraporn Wichaita
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Duangporn Polpanich
- NANOTEC, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Hierarchical Porous Interlocked Polymeric Microcapsules: Sulfonic Acid Functionalization as Acid Catalysts. Sci Rep 2017; 7:44178. [PMID: 28300062 PMCID: PMC5353599 DOI: 10.1038/srep44178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/03/2017] [Indexed: 11/30/2022] Open
Abstract
Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h−1), moreover, exhibits superior activity, selectivity and recyclability.
Collapse
|
11
|
Dahiya P, Caggioni M, Spicer PT. Arrested coalescence of viscoelastic droplets: polydisperse doublets. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0132. [PMID: 27298435 PMCID: PMC4920281 DOI: 10.1098/rsta.2015.0132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 05/30/2023]
Abstract
Arrested droplet coalescence produces stable anisotropic shapes and is a key mechanism for microstructure development in foods, petroleum and pharmaceutical formulations. Past work has examined the dynamic elastic arrest of coalescing monodisperse droplet doublets and developed a simple model of doublet strain as a function of physical variables. Although the work describes experimental data well, it is limited to describing same-size droplets. A new model incorporating a generalized description of doublet shape is developed to describe polydisperse doublet formation in more realistic emulsion systems. Polydisperse doublets are shown to arrest at lower strains than monodisperse doublets as a result of the smaller contribution of surface area in a given pair. Larger droplet size ratios have lower relative degrees of strain because coalescence is arrested at an earlier stage than in more monodisperse cases. Experimental observations of polydisperse doublet formation indicate that the model under-predicts arrest strains at low solid levels and small droplet sizes. The discrepancy is hypothesized to be the result of nonlinear elastic deformation at high strains.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Prerna Dahiya
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
| | - Marco Caggioni
- Microstructured Fluids Group, Procter and Gamble Co., West Chester, OH, USA
| | - Patrick T Spicer
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
| |
Collapse
|
12
|
Gu J, Wang X, Tian L, Feng L, Qu J, Liu P, Zhang X. Construction of Grape-like Silica-Based Hierarchical Porous Interlocked Microcapsules by Colloidal Crystals Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12530-12536. [PMID: 26509289 DOI: 10.1021/acs.langmuir.5b03465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a facile strategy to prepare grape-like silica-based hierarchical porous interlocked microcapsules (HPIMs) by polystyrene colloidal crystals templates, whose structure is the subtle integration of open mouthed structure, hierarchical porous nanostructure and interlocked architecture. HPIMs are fabricated by replicating colloidal crystals templates that have a hexagonal close-packed structure; thus, theoretically, each microcapsule has 12 open mouths, and these open mouths with mesoporous microcapsule wall construct the hierarchical porous structure. Furthermore, the interlocked architecture of the microcapsules can endow HPIMs with excellent mechanical stability and recyclability. By adjusting sulfonation time, the morphology, shell thickness, and even mesporous size of the HPIMs can be precisely controlled. In addition, HPIMs with various compositions are obtained via this method, such as silica and aminopropyl polysilsesquioxane (APSQ). All these unique features derived from a readily available method will give products with a broader range of applications.
Collapse
Affiliation(s)
- Jinyan Gu
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Xiaomei Wang
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Lei Tian
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Lei Feng
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Jiayan Qu
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Pange Liu
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| | - Xu Zhang
- Department of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P.R. China
| |
Collapse
|
13
|
Tian L, Li X, Zhao P, Chen X, Ali Z, Ali N, Zhang B, Zhang H, Zhang Q. Generalized Approach for Fabricating Monodisperse Anisotropic Microparticles via Single-Hole Swelling PGMA Seed Particles. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01319] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lei Tian
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangjie Li
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Panpan Zhao
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xin Chen
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zafar Ali
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Nisar Ali
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoliang Zhang
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hepeng Zhang
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuyu Zhang
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
14
|
Tang X, Yu F, Guo W, Wang T, Zhang Q, Zhu Q, Zhang X, Pei M. A facile procedure to fabricate nano calcium carbonate–polymer-based superhydrophobic surfaces. NEW J CHEM 2014. [DOI: 10.1039/c3nj01592k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile procedure to fabricate superhydrophobic surfaces based on nano calcium carbonate–polymer composites has been described.
Collapse
Affiliation(s)
- Xinde Tang
- School of Material Science and Engineering
- Shandong Jiaotong University
- Jinan 250023, China
| | - Faqi Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, China
| | - Wenjuan Guo
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, China
| | - Tieshi Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, China
| | - Qun Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, China
| | - Qiangqiang Zhu
- School of Material Science and Engineering
- Shandong Jiaotong University
- Jinan 250023, China
| | - Xiao Zhang
- School of Material Science and Engineering
- Shandong Jiaotong University
- Jinan 250023, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, China
| |
Collapse
|