1
|
Feng T, Yan S, Wang Z, Fan X. A facile fluorescence turn-on biosensor customized for monitoring of protein kinase activity based on carboxylic carbon nanoparticles-peptide complexes. LUMINESCENCE 2022; 37:922-929. [PMID: 35322517 DOI: 10.1002/bio.4237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
In this study, we present a facile and low-cost approach for detecting protein kinase A (PKA) by assembling a purpose-designed carboxyfluorescein (FAM)-labeled peptide with carboxylic carbon nanoparticles (CNPs). Fluorescence of the FAM-labeled peptide gradually decreases to low background signal as a result of the electron transfer from CNPs to FAM-labeled peptide via the peptide, which acts as a bridge. The reaction in the sensor in the presence of adenosine 5'-triphosphate and PKA phosphorylates the substrate peptide and disrupts the electrostatic repulsive force between the CNPs and the peptide, thus altering the spectroscopic signal of the system. The change in fluorescence signal was directly proportional to the PKA concentration in the range of 0-1.8 U/mL with a detection limit of 0.04 U/mL. These results suggest that PKA activity can be effectively measured using the developed PKA biosensor. Moreover, the fluorescence biosensor was successfully used in the investigation of PKA in spiked human embryonic kidney (HEK) 293 cells lysates, indicating its potential applications in protein kinase-related biochemical fundamental research.
Collapse
Affiliation(s)
- Tingting Feng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Shuzhu Yan
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Jia C, Bai J, Liu Z, Gao S, Han Y, Yan H. Application of a titanium-based metal-organic framework to protein kinase activity detection and inhibitor screening. Anal Chim Acta 2020; 1128:99-106. [DOI: 10.1016/j.aca.2020.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
|
3
|
Saito H, Hayakawa M, Kamoshita N, Yasumoto A, Suzuki-Inoue K, Yatomi Y, Ohmori T. Establishment of a megakaryoblastic cell line for conventional assessment of platelet calcium signaling. Int J Hematol 2020; 111:786-794. [PMID: 32180119 DOI: 10.1007/s12185-020-02853-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Platelet function tests utilizing agonists or patient serum are generally performed to assess platelet activation ex vivo. However, inter-individual differences in platelet reactivity and donor requirements make it difficult to standardize these tests. Here, we established a megakaryoblastic cell line for the conventional assessment of platelet activation. We first compared intracellular signaling pathways using CD32 crosslinking in several megakaryoblastic cell lines, including CMK, UT-7/TPO, and MEG-01 cells. We confirmed that CD32 was abundantly expressed on the cell surface, and that intracellular calcium mobilization and tyrosine phosphorylation occurred after CD32 crosslinking. We next employed GCaMP6s, a highly sensitive calcium indicator, to facilitate the detection of calcium mobilization by transducing CMK and MEG-01 cells with a plasmid harboring GCaMP6s under the control of the human elongation factor-1α promoter. Cells that stably expressed GCaMP6s emitted enhanced green fluorescent protein fluorescence in response to intracellular calcium mobilization following agonist stimulation in the absence of pretreatment. In summary, we have established megakaryoblastic cell lines that mimic platelets by mobilizing intracellular calcium in response to several agonists. These cell lines can potentially be utilized in high-throughput screening assays for the discovery of new antiplatelet drugs or diagnosis of disorders caused by platelet-activating substances.
Collapse
Affiliation(s)
- Hiroshi Saito
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan.
| |
Collapse
|
4
|
Wang J, Lv F, Liu L, Ma Y, Wang S. Strategies to design conjugated polymer based materials for biological sensing and imaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.06.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Development of near-infrared ratiometric fluorescent probe based on cationic conjugated polymer and CdTe/CdS QDs for label-free determination of glucose in human body fluids. Biosens Bioelectron 2017; 95:41-47. [DOI: 10.1016/j.bios.2017.03.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
6
|
Du C, Hu Y, Zhang Q, Guo Z, Ge G, Wang S, Zhai C, Zhu M. Competition-derived FRET-switching cationic conjugated polymer-Ir(III) complex probe for thrombin detection. Biosens Bioelectron 2017; 100:132-138. [PMID: 28886457 DOI: 10.1016/j.bios.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/14/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
Abstract
A novel, label-free and convenient strategy for thrombin assay has been developed based on the fluorescence resonance energy transfer (FRET) from a cationic conjugated polymer (CCP) to Ir(III) complex. The energy donor (CCP) and acceptor (Ir(III) complex) were taken into close proximity through π-π stacking interaction and electrostatic interaction, leading to the occurrence of FRET. However, the introduction of the thrombin aptamer upset the status and blocked the FRET process, but afterwards the reappearance of FRET phenomenon was confirmed by the special binding interaction between aptamer and thrombin, thus achieving the quantitative detection of thrombin. This assay could detect thrombin as low concentration as about 0.05pM and provided a highly specific selectivity among other nonspecific proteins. Moreover, the strategy may allow our platform to provide similar sensitivity toward different targets in an aptamer-structure-independent manner. Furthermore, the assay can be used to detect thrombin in diluted real urine or serum samples with a satisfactory recovery, implying its great potential for rapid detection of thrombin in the clinic.
Collapse
Affiliation(s)
- Chunnuan Du
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Qingqing Zhang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Guoping Ge
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Chunyang Zhai
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Mingshan Zhu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
7
|
Sayyed DR, Jung SH, Kim MS, Han ET, Park WS, Hong SH, Kim YM, Ha KS. In situ PKA activity assay by selective detection of its catalytic subunit using antibody arrays. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-1108-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Xiao L, Liu S, Lin L, Yao S. A CIEF-LIF method for simultaneous analysis of multiple protein kinases and screening of inhibitors. Electrophoresis 2016; 37:2075-82. [DOI: 10.1002/elps.201600090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Lixia Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha P. R. China
| | - Shengquan Liu
- College of Chemistry and Chemical Engineering; Hunan Normal University; Changsha P. R. China
| | - Lihua Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha P. R. China
| | - Shouzhuo Yao
- College of Chemistry and Chemical Engineering; Hunan Normal University; Changsha P. R. China
| |
Collapse
|
9
|
Liu X, Hua X, Fan Q, Chao J, Su S, Huang YQ, Wang L, Huang W. Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16458-16465. [PMID: 26173915 DOI: 10.1021/acsami.5b03662] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a new Föster resonance energy transfer (FRET) system that uses a special dye, thioflavin T (ThT), as an energy acceptor and a water-soluble conjugated polymer (CP) with high fluorescence as an energy donor. A simple, label-free, and sensitive strategy for the detection of thrombin in buffer and in diluted serum was designed based on this new system using ThT as an efficient inducer of the G-quadruplex. The difference between the blank and the positive samples was amplified due to distinctive FRET signals because thrombin has little effect on the intercalation of ThT into the G-quadruplex. In the absence of the target, ThT induces the aptamer to form a G-quadruplex and intercalates into it with strong fluorescence. The electrostatic attractions between the negatively charged G-quadruplex and positively charged CP allow a short donor-acceptor distance, resulting in a high FRET signal. However, in the presence of the target, the aptamer forms a G-quadruplex-thrombin complex first, followed by the intercalation of ThT into the G-quadruplex. A long distance exists between the donor and acceptor due to the strong steric hindrance from the large-sized thrombin, which leads to a low FRET signal. Compared with previously reported strategies based on the FRET between the CP and dye, our strategy is label-free, and the sensitivity was improved by an order of magnitude. Our strategy also shows the advantages of being simple, rapid (about 50 min), sensitive, label-free, and low-cost in comparison to strategies based on the FRET between quantum dots and dyes.
Collapse
|
10
|
Tang S, Nie Z, Li W, Li D, Huang Y, Yao S. A poly(ADP-ribose) polymerase-1 activity assay based on the FRET between a cationic conjugated polymer and supercharged green fluorescent protein. Chem Commun (Camb) 2015; 51:14389-92. [DOI: 10.1039/c5cc04170h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A label-free strategy for PARP-1 activity assay and inhibitors assessment has been developed based on the FRET between a cationic conjugated polymer (CCP) and supercharged green fluorescent protein (scGFP).
Collapse
Affiliation(s)
- Shiyun Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Daiqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|