1
|
Dong C, Ren J. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science. Acc Chem Res 2023; 56:2582-2594. [PMID: 37706459 DOI: 10.1021/acs.accounts.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Resonance light-scattering correlation spectroscopy (RLSCS) is a new single-particle detection method with its working principle being like fluorescence correlation spectroscopy (FCS). RLSCS is obtained by autocorrelation function analysis on the measured fluctuation of the resonance light scattering (RLS) intensity occurring within a subfemtoliter volume when a single nanoparticle (such as gold nanoparticles (NPs) or silver (SNPs)) freely diffuses through the volume. The RLSCS technique can detect such parameters as concentration, diffusion coefficient (translation and rotation), etc. Compared with the FCS technique, the correlated fluorescence intensity signal in RLSCS is replaced with the RLS signal of the nanoparticles, overcoming some limits of the fluorescent probes such as photobleaching under high-intensity or long-term illumination. In this Account, we showcase RLSCS methods, theoretical models at different optical configurations, and some key applications. First, the RLSCS optical detection system was constructed based on the confocal optics, its theoretical model was proposed, and the diffusion behaviors of the nanoparticles in the solution were studied including the rotational and translational diffusion. And, methods were developed to measure the concentration, size, aspect ratio, and size distribution of the NPs. Second, based on the RLSCS methods, some detection strategies were developed for homogeneous DNA detection, immunoassay, apoptosis assay, self-thermophoresis of the nanomotor, and quantitative assay in single living cells. Meanwhile, a new fluorescence/scattering cross-correlation spectroscopy (FSCCS) method was proposed for monitoring the molecule-particle interaction. This method enriched the conventional fluorescence/fluorescence cross-correlation spectroscopy (FCCS) method. Third, using the EMCCD with high sensitivity and rapid response as an optical detector, two temporospatially resolved scattering correlation spectroscopy methods and their theoretical models were developed: total internal reflection (TIR) configuration-based spatially resolved scattering correlation spectroscopy (SRSCS) and dark-field illumination-based scattering correlation spectroscopy (DFSCS). These methods extended single-spot confocal RLSCS to imaging RLSCS, which makes RLSCS have the ability for multiple channel detection with temporospatial resolution. The method was successfully used for investigating the dynamic behaviors of gold NPs in live cells and obtained its temporospatial concentration distribution and diffusion behaviors. The final section of this Account outlines future directions in the development of RLSCS.
Collapse
Affiliation(s)
- Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Breaking the Concentration Limit in Fluorescence Fluctuation Spectroscopy with Camera-Based Detection. Int J Mol Sci 2022; 23:ijms23179840. [PMID: 36077237 PMCID: PMC9456017 DOI: 10.3390/ijms23179840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is an extremely versatile tool that has been widely used to measure chemical reaction rates, protein binding, nanoparticle-protein interactions, and biomolecular dynamics in vitro and in vivo. As an inherently micro-sized approach, FCS is compatible with high-throughput screening applications, as demanded for drug design, but typically limited to nanomolar concentrations, which restricts possible applications. Here, we show how massively parallel camera-based detection with side illumination can extend the usable concentration range of FCS more than 100-fold to measure low affinity processes. Our line illumination (LIM) approach is robust, fast (1 s acquisition times), and does not require any reference measurements to characterize the observation volume size.
Collapse
|
3
|
Padilla-Coley S, Rudebeck EE, Smith BD, Pfeffer FM. Intracellular fluorescence competition assay for inhibitor engagement of histone deacetylase. Bioorg Med Chem Lett 2021; 47:128207. [PMID: 34146703 DOI: 10.1016/j.bmcl.2021.128207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
An intracellular fluorescence competition assay was developed to assess the capability of inhibitor candidates to engage histone deacetylase (HDAC) inside living cells and thus diminish cell uptake and staining by the HDAC-targeted fluorescent probe APS. Fluorescence cell microscopy and flow cytometry showed that pre-incubation of living cells with candidate inhibitors led to diminished cell uptake of the fluorescent probe. The assay was effective because the fluorescent probe (APS) possessed the required performance properties, including bright fluorescence, ready membrane diffusion, selective intracellular HDAC affinity, and negligible acute cytotoxicity. The concept of an intracellular fluorescence competition assay is generalizable and has broad applicability since it obviates the requirement to use the isolated biomacromolecule target for screening of molecular candidates with target affinity.
Collapse
Affiliation(s)
- Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Elley E Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
4
|
Deng L, Huang X, Dong C, Ren J. Simultaneously monitoring endogenous MAPK members in single living cells by multi-channel fluorescence correlation spectroscopy. Analyst 2021; 146:2581-2590. [PMID: 33899064 DOI: 10.1039/d1an00090j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a major module for cellular signal transduction. The dysregulation of the MAPK pathway has been involved in the pathogenesis of multiple diseases ranging from cancers to chronic inflammations. So far, we have not fully understood the influences of external factors and signaling networks on the MAPK pathway due to the lack of in situ methods for simultaneous detection of multiple kinases in the pathway in living cells. Herein, we present a new strategy for in situ and simultaneously monitoring MAPK pathway kinases in single living cells combining multi-channel fluorescence correlation spectroscopy (FCS) with affinity fluorescent probes. We chose rapidly growing fibrosarcoma kinase (RAF), mitogen-activated protein kinase (MEK), and extracellular signal-regulated kinase (ERK) as representative members in the MAPK pathway. We designed and synthesized three fluorescent affinity probes and experimental results demonstrated that the three probes specifically targeted endogenous BRAF, MEK1/2, and ERK1/2 in living cells. Based on the multi-channel FCS system, we studied the influences of biological substances, drugs and oxidative stress on the activities of endogenous MAPK kinases and the cross-talk between the MAPK and PI3K-mTOR pathways. We have found that serum, sorafenib, and hydrogen peroxide can regulate multiple MAPK kinases and the effects of external stimuli can transmit to the MAPK pathway; furthermore, we have observed that the MAPK pathway can be activated by modulating the PI3K-mTOR pathway. Our results illustrated the complexity of a cellular signal network and the necessity of in situ and simultaneous determination of biomolecules in living cells.
Collapse
Affiliation(s)
- Liyun Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
5
|
Concomitant analysis of dasatinib and curcuminoids in a pluronic-based nanoparticle formulation using a novel HPLC method. Chromatographia 2020. [DOI: 10.1007/s10337-020-03956-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Deng L, Huang X, Ren J. In Situ Study of the Drug–Target Protein Interaction in Single Living Cells by Combining Fluorescence Correlation Spectroscopy with Affinity Probes. Anal Chem 2020; 92:7020-7027. [DOI: 10.1021/acs.analchem.0c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liyun Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
7
|
Su D, Hou Y, Dong C, Ren J. Fluctuation correlation spectroscopy and its applications in homogeneous analysis. Anal Bioanal Chem 2019; 411:4523-4540. [DOI: 10.1007/s00216-019-01884-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
|
8
|
Ruan L, Ge M, Huang X, Ren J. Assay of Single-Cell Apoptosis by Ensemble and Single-Molecule Fluorescence Methods: Annexin-V/Polyethylene Glycol-Functionalized Quantum Dots as Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10040-10047. [PMID: 30063356 DOI: 10.1021/acs.langmuir.8b01749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Apoptosis plays a critical role in many biological processes and the etiology of various diseases of the immune system. The study of apoptosis would allow both improving the diagnosis of certain diseases and serving as a target of drug screening. In this paper, we developed a sensitive assay of single-cell apoptosis using semiconductor quantum dots (QDs) as fluorescent-labeling probes. The principle of this assay is based on the detection of phosphatidylserine (PS) exposed on the plasma membrane during the drug-induced apoptosis. The QD-labeled annexin V (AV) was prepared to specifically target PS on the membrane of apoptotic cells, and PS was detected by fluorescent imaging, flow cytometer, and single-molecule fluorescence correlation spectroscopy (FCS). We developed the procedures for conjugation of QDs to AV and for purification of their conjugates by gel chromatography. The obtained conjugates were characterized by FCS, capillary electrophoresis, and zeta potential analyzer. We studied the nonspecific adsorption of cells to different surface-modified QDs and found that the nonspecific adsorption effects were significantly reduced by modification of QDs with polyethylene glycol in the detection of apoptosis. In this assay, the results obtained by flow cytometry were consistent with the commercial test kit. Furthermore, a home-built single-molecule FCS system was developed for in situ study the drug-induced apoptosis. We observed the significant change in the diffusion coefficients of QDs on cells during the progress of cell apoptosis. Compared with conventional methods, the fluorescent methods represented here possess high sensitivity because of the use of high photo stability and brightness QDs as labeling probes and provide the temp-spatial information on a single apoptotic cell.
Collapse
Affiliation(s)
- Lingao Ruan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
- Shanghai Laiyi Center for Biopharmaceutical R&D , 200 Niudun Road , Shanghai 201203 , People's Republic of China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D , 200 Niudun Road , Shanghai 201203 , People's Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| |
Collapse
|
9
|
Xu M, Zheng M, Liu G, Zhang M, Kang J. Screening of break point cluster region Abelson tyrosine kinase inhibitors by capillary electrophoresis. J Chromatogr A 2018; 1537:128-134. [DOI: 10.1016/j.chroma.2018.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
|
10
|
Su D, Hu X, Dong C, Ren J. Determination of Caspase-3 Activity and Its Inhibition Constant by Combination of Fluorescence Correlation Spectroscopy with a Microwell Chip. Anal Chem 2017; 89:9788-9796. [DOI: 10.1021/acs.analchem.7b01735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Di Su
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaocai Hu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Li J, Dong C, Ren J. Strategies to reduce detection volume of fluorescence correlation spectroscopy (FCS) to realize physiological concentration measurements. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|