1
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
2
|
Dai J, Xing Y, Xiao L, Li J, Cao R, He Y, Fang H, Periasamy A, Oberhozler J, Jin L, Landers JP, Wang Y, Li X. Microfluidic Disc-on-a-Chip Device for Mouse Intervertebral Disc-Pitching a Next-Generation Research Platform To Study Disc Degeneration. ACS Biomater Sci Eng 2019; 5:2041-2051. [PMID: 31763444 DOI: 10.1021/acsbiomaterials.8b01522] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Low back pain is the most common cause of disability worldwide, and intervertebral disc degeneration is a major cause of low back pain. Unfortunately, discogenic low back pain is often treated with symptomatic relief interventions, as no disease-modifying medications are yet available. Both to-be-deciphered disc biology/pathology and inadequate in vitro research platform are major hurdles limiting drug discovery progress for disc degeneration. Here, we developed a microfluidic disc-on-a-chip device tailored for mouse disc organ as an in vitro research platform. We hypothesize that continuous nutrients empowered by a microfluidic device would improve biological performance of cultured mouse discs compared to those in static condition. This device permitted continuous media flow to mimic in vivo disc microenvironment. Intriguingly, mouse discs cultured on the microfluidic device exhibited much higher cell viability, better preserved structure integrity and anabolic-catabolic metabolism in both nucleus pulposus and annulus fibrosus, for up to 21 days compared to those in static culture. This first "disc-on-a-chip" device lays groundwork for future preclinical studies in a relative long-term organ culture given the chronic nature of intervertebral disc degeneration. In addition, this platform is readily transformable into a streamlined in vitro research platform to recapitulate physiological and pathophysiological microenvironment to accelerate disc research.
Collapse
Affiliation(s)
- Jun Dai
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States.,Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue Qiaokou District, Wuhan 430030, P.R. China
| | - Yuan Xing
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States
| | - Jingyi Li
- ∥ Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Ruofan Cao
- W.M. Keck Center for Cellular Imaging, University of Virginia, 90 Geldard Drive, Charlottesville, Virginia 22904, United States
| | - Yi He
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Huang Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue Qiaokou District, Wuhan 430030, P.R. China
| | - Ammasi Periasamy
- W.M. Keck Center for Cellular Imaging, University of Virginia, 90 Geldard Drive, Charlottesville, Virginia 22904, United States
| | - Jose Oberhozler
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States
| | - James P Landers
- ∥ Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, Virginia 22904, United States.,Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908, United States
| | - Yong Wang
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, Virginia 22908, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, Virginia 22908, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908, United States
| |
Collapse
|
3
|
Sloane HS, Carter MB, Cecil AEC, Le Roux D, Mills DL, Landers JP. Warfarin genotyping with hybridization-induced aggregation on a poly(ethylene terephthalate) microdevice. Analyst 2017; 142:366-374. [DOI: 10.1039/c6an02325h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel genotyping method is established, using allele-specific PCR followed by hybridization-induced aggregation (HIA) of microbeads on a multiplexed microdevice.
Collapse
Affiliation(s)
| | | | | | | | - Daniel L. Mills
- Department of Chemistry
- University of Virginia
- Charlottesville
- USA
| | - James P. Landers
- Department of Chemistry
- University of Virginia
- Charlottesville
- USA
- Department of Pathology
| |
Collapse
|
4
|
Jackson K, Borba J, Meija M, Mills D, Haverstick D, Olson K, Aranda R, Garner G, Carrilho E, Landers J. DNA purification using dynamic solid-phase extraction on a rotationally-driven polyethylene-terephthalate microdevice. Anal Chim Acta 2016; 937:1-10. [DOI: 10.1016/j.aca.2016.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
|
5
|
Sloane HS, Landers JP, Kelly KA. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors. J Mol Diagn 2016; 18:546-53. [PMID: 27289420 DOI: 10.1016/j.jmoldx.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/04/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways.
Collapse
Affiliation(s)
- Hillary S Sloane
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Department of Pathology, University of Virginia, Charlottesville, Virginia; Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
6
|
Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Guenther A, Tschöpe A, Schotter J. Homogeneous Biosensing Based on Magnetic Particle Labels. SENSORS 2016; 16:s16060828. [PMID: 27275824 PMCID: PMC4934254 DOI: 10.3390/s16060828] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
Abstract
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.
Collapse
Affiliation(s)
- Stefan Schrittwieser
- Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna1220, Austria.
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Marburg 35037, Germany.
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Marburg 35037, Germany.
| | - Sergio Lentijo-Mozo
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, Toulouse 31077, France.
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, Toulouse 31077, France.
| | - Jan Dieckhoff
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig 38106, Germany.
| | - Frank Ludwig
- Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig 38106, Germany.
| | - Annegret Guenther
- Experimentalphysik, Universität des Saarlandes, Saarbrücken 66123, Germany.
| | - Andreas Tschöpe
- Experimentalphysik, Universität des Saarlandes, Saarbrücken 66123, Germany.
| | - Joerg Schotter
- Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna1220, Austria.
| |
Collapse
|
7
|
Strachan BC, Sloane HS, Houpt E, Lee JC, Miranian DC, Li J, Nelson DA, Landers JP. A simple integrated microfluidic device for the multiplexed fluorescence-free detection of Salmonella enterica. Analyst 2015; 141:947-55. [PMID: 26658961 DOI: 10.1039/c5an01969a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid, inexpensive and simplistic nucleic acid testing (NAT) is pivotal in delivering biotechnology solutions at the point-of-care (POC). We present a poly(methylmethacrylate) (PMMA) microdevice where on-board infrared-mediated PCR amplification is seamlessly integrated with a particle-based, visual DNA detection for specific detection of bacterial targets in less than 35 minutes. Fluidic control is achieved using a capillary burst valve laser-ablated in a novel manner to confine the PCR reagents to a chamber during thermal cycling, and a manual torque-actuated pressure system to mobilize the fluid from the PCR chamber to the detection reservoir containing oligonucleotide-adducted magnetic particles. Interaction of amplified products specific to the target organism with the beads in a rotating magnetic field allows for near instantaneous (<30 s) detection based on hybridization-induced aggregation (HIA) of the particles and simple optical analysis. The integration of PCR with this rapid, sequence-specific DNA detection method on a single microdevice presents the possibility of creating POC NAT systems that are low cost, easy-to-use, and involve minimal external hardware.
Collapse
Affiliation(s)
- Briony C Strachan
- Dept of Chemistry, McCormick Road, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sloane HS, Kelly KA, Landers JP. Rapid KRAS Mutation Detection via Hybridization-Induced Aggregation of Microbeads. Anal Chem 2015; 87:10275-82. [DOI: 10.1021/acs.analchem.5b01876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hillary S. Sloane
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kimberly A. Kelly
- Department
of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Robert
M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - James P. Landers
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
- Department
of Mechanical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|