1
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
2
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|
3
|
Zhao L, Liu J, Bai Y, Feng F, Yang X. Exploration of carbon dots derived from epimedium towards detecting dopamine and hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Shafi PM, Joseph N, Karthik R, Shim JJ, Bose AC, Ganesh V. Lemon juice-assisted synthesis of LaMnO3 perovskite nanoparticles for electrochemical detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Cao M, Zheng L, Gu Y, Wang Y, Zhang H, Xu X. Electrostatic self-assembly to fabricate ZnO nanoparticles/reduced graphene oxide composites for hypersensitivity detection of dopamine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Fantozzi N, Pétuya R, Insuasty A, Long A, Lefevre S, Schmitt A, Robert V, Dutasta JP, Baraille I, Guy L, Genin E, Bégué D, Martinez A, Pinet S, Gosse I. A new fluorescent hemicryptophane for acetylcholine recognition with an unusual recognition mode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02794d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ammonium of the target interacts with the south part of the hemicryptophane probably because the cyclotriveratrylene's electronic density is altered by the extension of conjugation.
Collapse
|
7
|
Facile Surface Engineering of Ag–In–Zn–S Quantum Dot Photocatalysts by Mixed-Ligand Passivation with Improved Charge Carrier Lifetime. Catal Letters 2019. [DOI: 10.1007/s10562-019-02718-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
He W, Gui R, Jin H, Wang B, Bu X, Fu Y. Ratiometric fluorescence and visual imaging detection of dopamine based on carbon dots/copper nanoclusters dual-emitting nanohybrids. Talanta 2018; 178:109-115. [DOI: 10.1016/j.talanta.2017.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/02/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022]
|
9
|
Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta 2018; 178:1006-1010. [DOI: 10.1016/j.talanta.2017.08.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
|
10
|
Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine. Talanta 2018; 182:428-432. [PMID: 29501174 DOI: 10.1016/j.talanta.2018.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag+ into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors.
Collapse
Affiliation(s)
- Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xiaogen Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Dan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
11
|
Jin H, Gui R, Sun J, Wang Y. RETRACTED: Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin. Talanta 2017; 176:277-283. [PMID: 28917752 DOI: 10.1016/j.talanta.2017.08.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of the Editor following concerns raised by a reader.
The article uses two electron micrographs which have been used in other publications as well, denoting different samples.
Fig. 1A is identical to Fig. 3E in RSC Adv., 2013,3, 20959-20969 doi: 10.1039/C3RA43120G despite describing different samples.
Fig. 2A is identical to Fig. 1B in Sensors & Actuators B: Chemical, vol 245, pp 386-394 https://doi.org/10.1016/j.snb.2017.01.166 and Fig. 1A in Materials Letters vol 195 pp 131-135 https://doi.org/10.1016/j.matlet.2017.02.119 despite describing different samples.
These problems with the data presented cast doubt on all the data, and accordingly also the conclusions based on that data, in this publication.
The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process., http://dx.doi.org/10.1016/j.talanta.2017.08.043.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao266071, PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao266071, PR China.
| | - Jie Sun
- Institute of Materia Medica,Medica, Shandong Academy of Medical Sciences, Jinan250062, PR China
| | - Yanfeng Wang
- Institute of Materia Medica,Medica, Shandong Academy of Medical Sciences, Jinan250062, PR China
| |
Collapse
|
12
|
Jin H, Gui R, Wang Y, Sun J. Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta 2017; 169:141-148. [DOI: 10.1016/j.talanta.2017.03.083] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 01/28/2023]
|
13
|
Recent advances in optical properties and applications of colloidal quantum dots under two-photon excitation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|