1
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Sirimangkalakitti N, Harada K, Yamada M, Arai M, Arisawa M. A New Tetracyclic Bromopyrrole-Imidazole Derivative through Direct Chemical Diversification of Substances Present in Natural Product Extract from Marine Sponge Petrosia ( Strongylophora) sp. Molecules 2022; 28:143. [PMID: 36615336 PMCID: PMC9821877 DOI: 10.3390/molecules28010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chemical diversification of substances present in natural product extracts can lead to a number of natural product-like compounds with a better chance of desirable bioactivities. The aim of this work was to discover unprecedented chemical conversion and produce new compounds through a one-step reaction of substances present in the extracts of marine sponges. In this report, a new unnatural tetracyclic bromopyrrole-imidazole derivative, rac-6-OEt-cylindradine A (1), was created from a chemically diversified extract of the sponge Petrosia (Strongylophora) sp. We also confirmed that 1 originated from naturally occurring (-)-cylindradine A (2) via a new reaction pattern. Moreover, (-)-dibromophakellin (3) and 4,5-dibromopyrrole-2-carboxylic acid (4), as well as 2, were reported herein for the first time in this genus. Studies on the possible reaction mechanism and bioactivities were also conducted. The results indicate that the direct chemical diversification of substances present in natural product extracts can be a speedy and useful strategy for the discovery of new compounds.
Collapse
Affiliation(s)
| | | | | | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1–6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1–6 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
3
|
Hubbell GE, Tepe JJ. Rh(III)-Catalyzed C-H Activation/Annulation of Benzohydroxamates and 2-Imidazolones: Access to Urea-Fused-Dihydroisoquinolone Scaffolds Reminiscent of Pyrrole Alkaloid Natural Products. Org Lett 2022; 24:6740-6744. [PMID: 36083605 DOI: 10.1021/acs.orglett.2c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rh(III)-catalyzed C-H activation/annulation with an imidazolone as alkene partner is reported to access dihydroisoquinolone-fused imidazolin-2-ones. These bicycles are reminiscent of scaffolds belonging to the pyrrole alkaloid family of natural products. This approach facilitates construction of a variety of urea-fused dihydroisoquinolone scaffolds including heterocyclic moieties.
Collapse
Affiliation(s)
- Grace E Hubbell
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Singh N, Singh S, Kohli S, Singh A, Asiki H, Rathee G, Chandra R, Anderson EA. Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020). Org Chem Front 2021. [DOI: 10.1039/d0qo01574a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review discusses total syntheses of pyrrole-containing natural products over the last ten years, highlighting recent advances in the chemistry of pyrroles in the context of their innate reactivity, and their preparation in complex settings.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sahil Kohli
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hannah Asiki
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Garima Rathee
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Edward A. Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
5
|
Odagi M, Okuda K, Ishizuka H, Adachi K, Nagasawa K. Synthesis of Spiroguanidine Derivatives by Dearomative Oxidative Cyclization using Hypervalent Iodine Reagent. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kazuma Okuda
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Hayate Ishizuka
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kanna Adachi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| |
Collapse
|
6
|
|
7
|
Heravi MM, Zadsirjan V, Saedi P, Momeni T. Applications of Friedel-Crafts reactions in total synthesis of natural products. RSC Adv 2018; 8:40061-40163. [PMID: 35558228 PMCID: PMC9091380 DOI: 10.1039/c8ra07325b] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022] Open
Abstract
Over the years, Friedel-Crafts (FC) reactions have been acknowledged as the most useful and powerful synthetic tools for the construction of a special kind of carbon-carbon bond involving an aromatic moiety. Its stoichiometric and, more recently, its catalytic procedures have extensively been studied. This reaction in recent years has frequently been used as a key step (steps) in the total synthesis of natural products and targeted complex bioactive molecules. In this review, we try to underscore the applications of intermolecular and intramolecular FC reactions in the total syntheses of natural products and complex molecules, exhibiting diverse biological properties.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Pegah Saedi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
8
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
9
|
Iwata M, Kamijoh Y, Yamamoto E, Yamanaka M, Nagasawa K. Total Synthesis of Pyrrole–Imidazole Alkaloid (+)-Cylindradine B. Org Lett 2017; 19:420-423. [DOI: 10.1021/acs.orglett.6b03722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Makoto Iwata
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei
City, Tokyo 184-8588, Japan
| | - Yuko Kamijoh
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei
City, Tokyo 184-8588, Japan
| | - Eri Yamamoto
- Department
of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masahiro Yamanaka
- Department
of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kazuo Nagasawa
- Department
of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei
City, Tokyo 184-8588, Japan
| |
Collapse
|
10
|
Lindel T. Chemistry and Biology of the Pyrrole–Imidazole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:117-219. [DOI: 10.1016/bs.alkal.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
13
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
14
|
Daniel M, Blanchard F, Nocquet-Thibault S, Cariou K, Dodd RH. Halocyclization of Unsaturated Guanidines Mediated by Koser’s Reagent and Lithium Halides. J Org Chem 2015; 80:10624-33. [DOI: 10.1021/acs.joc.5b01750] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marion Daniel
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Florent Blanchard
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Sophie Nocquet-Thibault
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Kevin Cariou
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Robert H. Dodd
- Institut de Chimie des Substances
Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Iwata M, Kamijoh Y, Nagasawa K. Synthetic Studies of Oroidin-derived Pyrrole-imidazole Alkaloids. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.1092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Kazuo Nagasawa
- Faculty of Technology, Tokyo University of Agriculture and Technology
| |
Collapse
|