1
|
Lembo V, Bottegoni G. Systematic Investigation of Dual-Target-Directed Ligands. J Med Chem 2024; 67:10374-10385. [PMID: 38843874 PMCID: PMC11215722 DOI: 10.1021/acs.jmedchem.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Multitarget-directed ligands (MTDLs) are compounds rationally designed to affect multiple targets, aiming for a better therapeutic profile. For over 20 years, MTDLs have garnered increasing attention, the idea being that their full potential would have been achieved, thanks to unprecedented target combinations and advanced medicinal chemistry strategies. This study presents a literature mining effort resulting in a data set of dual-target-directed ligands (DTDLs), the fundamental example of MTDLs. We used this data set to evaluate the rationale behind target selection and the chemical novelty of DTDLs targeting specific protein combinations. Our analysis focused on DTDL targets in terms of biological function, disease association, structure, and chemogenomic traits. We also compared DTDLs with single-target compounds. We found that well-known target pathology associations often guide DTDL design, leveraging existing chemical scaffolds and binding pocket similarities. These findings highlight the current state of the field and suggest substantial untapped potential for rational polypharmacology.
Collapse
Affiliation(s)
- Vittorio Lembo
- Department
of Biomolecular Sciences, Università
degli Studi di Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, Italy
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Giovanni Bottegoni
- Department
of Biomolecular Sciences, Università
degli Studi di Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, Italy
- Institute
of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| |
Collapse
|
2
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Di Martino RMC, Cavalli A, Bottegoni G. Dopamine D3 receptor ligands: a patent review (2014-2020). Expert Opin Ther Pat 2022; 32:605-627. [PMID: 35235753 DOI: 10.1080/13543776.2022.2049240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Compelling evidence identified D3 dopamine receptor (D3R) as a suitable target for therapeutic intervention on CNS-associated disorders, cancer and other conditions. Several efforts have been made toward developing potent and selective ligands for modulating signalling pathways operated by these GPCRs. The rational design of D3R ligands endowed with a pharmacologically relevant profile has traditionally not encountered much support from computational methods due to a very limited knowledge of the receptor structure and of its conformational dynamics. We believe that recent progress in structural biology will change this state of affairs in the next decade. AREAS COVERED This review provides an overview of the recent (2014-2020) patent literature on novel classes of D3R ligands developed within the framework of CNS-related diseases, cancer and additional conditions. When possible, an in-depth description of both in vitro and in vivo generated data is presented. New therapeutic applications of known molecules with activity at D3R are discussed. EXPERT OPINION Building on current knowledge, future D3R-focused drug discovery campaigns will be propelled by a combination of unprecedented availability of structural information with advanced computational and analytical methods. The design of D3R ligands with the sought activity, efficacy and selectivity profile will become increasingly more streamlined.
Collapse
Affiliation(s)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Bologna University, via Belmeloro 6, 40126, Bologna, Italy
| | - Giovanni Bottegoni
- Department of Biomolecular Sciences, Urbino University "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy.,Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
4
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
5
|
Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D 2 3,4-dihydroquinolin-2(1 H)-one Derivatives Related to Aripiprazole. Biomolecules 2021; 11:biom11091262. [PMID: 34572475 PMCID: PMC8464836 DOI: 10.3390/biom11091262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.
Collapse
|
6
|
Di Martino RMC, Bottegoni G, Seghetti F, Russo D, Penna I, De Simone A, Ottonello G, Mandrup Bertozzi S, Armirotti A, Bandiera T, Belluti F, Cavalli A. Multitarget Compounds for Bipolar Disorder: From Rational Design to Preliminary Pharmacokinetic Evaluation. ChemMedChem 2020; 15:949-954. [PMID: 32267999 DOI: 10.1002/cmdc.202000210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Due to the complex and multifactorial nature of bipolar disorder (BD), single-target drugs have traditionally provided limited relief with no disease-modifying effects. In line with the polypharmacology paradigm, we attempted to overcome these limitations by devising two series of multitarget-directed ligands endowed with both a partial agonist profile at dopamine receptor D3 (D3R) and inhibitory activity against glycogen synthase kinase 3 beta (GSK-3β). These are two structurally unrelated targets that play independent, yet connected, roles in cognition and mood regulation. Two compounds (7 and 10) emerged as promising D3R/GSK-3β multitarget-directed ligands with nanomolar activity at D3R and low-micromolar inhibition of GSK-3β, thereby confirming, albeit preliminarily, the feasibility of our strategy. Furthermore, 7 showed promising drug-like properties in stability and pharmacokinetic studies.
Collapse
Affiliation(s)
| | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham Sir Robert Aitken Institute for Clinical Research Edgbaston, Birmingham, B15 2TT, UK
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Debora Russo
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | - Ilaria Penna
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | | | - Giuliana Ottonello
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Italian Institure of Technology, Via Morego 30, 16163, Genova, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
7
|
Ferraro M, Decherchi S, De Simone A, Recanatini M, Cavalli A, Bottegoni G. Multi-target dopamine D3 receptor modulators: Actionable knowledge for drug design from molecular dynamics and machine learning. Eur J Med Chem 2020; 188:111975. [PMID: 31940507 DOI: 10.1016/j.ejmech.2019.111975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Local changes in the structure of G-protein coupled receptors (GPCR) binders largely affect their pharmacological profile. While the sought efficacy can be empirically obtained by introducing local modifications, the underlining structural explanation can remain elusive. Here, molecular dynamics (MD) simulations of the eticlopride-bound inactive state of the Dopamine D3 Receptor (D3DR) have been clustered using a machine learning-based approach in the attempt to rationalize the efficacy change in four congeneric modulators. Accumulating extended MD trajectories of receptor-ligand complexes, we observed how the increase in ligand flexibility progressively destabilized the crystal structure of the inactivated receptor. To prospectively validate this model, a partial agonist was rationally designed based on structural insights and computational modeling, and eventually synthesized and tested. Results turned out to be in line with the predictions. This case study suggests that the investigation of ligand flexibility in the framework of extended MD simulations can assist and inform drug design strategies, highlighting its potential role as a powerful in silico counterpart to functional assays.
Collapse
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica Del Riconoscimento Molecolare, Consiglio Nazionale Delle Ricerche (ICRM-CNR), Via Mario Bianco 9, 20131, Milan, Italy.
| | - Sergio Decherchi
- Computational & Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy.
| | - Alessio De Simone
- Sygnature Discovery Ltd, Bio City, Pennyfoot St, Nottingham NG1 1GR, United Kingdom.
| | - Maurizio Recanatini
- Dept. of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Andrea Cavalli
- Computational & Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy; Dept. of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham, Sir Robert Aitken Institute for Clinical Research, Edgbaston, B15 2TT, United Kingdom.
| |
Collapse
|
8
|
Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem 2019; 188:111953. [PMID: 31945644 DOI: 10.1016/j.ejmech.2019.111953] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an important enzyme creditworthy of hydrolyzing endocannabinoids and related-amidated signalling lipids, discovery of which has pioneered novel arena of pharmacological canvasses to unwrap its curative potency in various diseased circumstances. It presents contemporary basis for understanding molecules regulating and mediating inflammatory reactions, pain, anxiety, depression, and neurodegeneration. FAAH inhibitors form vital approach for discovery of therapeutic agents that are concerned with local elevation of endocannabinoids under certain stimuli, debarring adverse/unwanted secondary effects from global activation of cannabinoid receptors by exogenous cannabimimetics. During past decades, several molecules with excellent potency developed through tailor-made approaches entered into clinical trials, but none could reach market. Hence, hunt for novel, non-toxic and selective FAAH inhibitors are on horizon. This review summarizes present perception on FAAH in conjunction with its structure, mechanism of catalysis and biological functions. It also foregrounds recent development of molecules belonging to diverse chemical classes as potential FAAH inhibitors bobbing up from in-depth chemical, mechanistic and computational studies published since 2015-November 2019, focusing on their potency. This review will assist readers to obtain rationale on FAAH as potential target for addressing various disease conditions, acquiring significant knowledge on recently established inhibitor scaffolds and their development potentials. New technologies including MD-MM simulations and 3D-QSAR studies allow mechanistic characterization of enzyme. Assessment of in-vitro and in-vivo efficacy of existing FAAH inhibitors will facilitate researchers to design novel ligands utilizing modern drug design methods. The discussions will also impose precaution in decision making process, quashing possibility of late stage failure.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Grillo A, Chemi G, Brogi S, Brindisi M, Relitti N, Fezza F, Fazio D, Castelletti L, Perdona E, Wong A, Lamponi S, Pecorelli A, Benedusi M, Fantacci M, Valoti M, Valacchi G, Micheli F, Novellino E, Campiani G, Butini S, Maccarrone M, Gemma S. Development of novel multipotent compounds modulating endocannabinoid and dopaminergic systems. Eur J Med Chem 2019; 183:111674. [DOI: 10.1016/j.ejmech.2019.111674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/17/2023]
|
10
|
Abstract
‘Drug promiscuity’ refers to a drug that can act on multiple molecular targets, exhibiting similar or different pharmacological effects. Drugs may interact with unwanted targets, leading to off-target effects (one of the main reasons for side effects). Thus, intervention to prevent off-target effects in the early stages of drug discovery could reduce the risk of failure. The conversion between target and off-target effects is important for drug repurposing. Drug repurposing strategies could reduce research and development costs. This review details the research progress in the rational application of drug promiscuity for the discovery of multi-target drugs, drug repurposing and improving druggability in medicinal chemistry over the last 5 years.
Collapse
|
11
|
Jaiteh M, Zeifman A, Saarinen M, Svenningsson P, Bréa J, Loza MI, Carlsson J. Docking Screens for Dual Inhibitors of Disparate Drug Targets for Parkinson's Disease. J Med Chem 2018; 61:5269-5278. [PMID: 29792714 PMCID: PMC6716773 DOI: 10.1021/acs.jmedchem.8b00204] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of multiple biological targets with a single drug can lead to synergistic therapeutic effects and has been demonstrated to be essential for efficient treatment of CNS disorders. However, rational design of compounds that interact with several targets is very challenging. Here, we demonstrate that structure-based virtual screening can guide the discovery of multi-target ligands of unrelated proteins relevant for Parkinson's disease. A library with 5.4 million molecules was docked to crystal structures of the A2A adenosine receptor (A2AAR) and monoamine oxidase B (MAO-B). Twenty-four compounds that were among the highest ranked for both binding sites were evaluated experimentally, resulting in the discovery of four dual-target ligands. The most potent compound was an A2AAR antagonist with nanomolar affinity ( Ki = 19 nM) and inhibited MAO-B with an IC50 of 100 nM. Optimization guided by the predicted binding modes led to the identification of a second potent dual-target scaffold. The two discovered scaffolds were shown to counteract 6-hydroxydopamine-induced neurotoxicity in dopaminergic neuronal-like SH-SY5Y cells. Structure-based screening can hence be used to identify ligands with specific polypharmacological profiles, providing new avenues for drug development against complex diseases.
Collapse
Affiliation(s)
- Mariama Jaiteh
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, SE-751 24 Uppsala , Sweden
| | - Alexey Zeifman
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, SE-751 24 Uppsala , Sweden
| | - Marcus Saarinen
- Center of Molecular Medicine, Department of Physiology and Pharmacology , Karolinska Institute , SE-171 77 Stockholm , Sweden
| | - Per Svenningsson
- Center of Molecular Medicine, Department of Physiology and Pharmacology , Karolinska Institute , SE-171 77 Stockholm , Sweden
| | - Jose Bréa
- USEF Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases , University of Santiago de Compostela , 15706 Santiago de Compostela , Spain
| | - Maria Isabel Loza
- USEF Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases , University of Santiago de Compostela , 15706 Santiago de Compostela , Spain
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, SE-751 24 Uppsala , Sweden
| |
Collapse
|
12
|
De Simone A, Russo D, Ruda GF, Micoli A, Ferraro M, Di Martino RMC, Ottonello G, Summa M, Armirotti A, Bandiera T, Cavalli A, Bottegoni G. Design, Synthesis, Structure–Activity Relationship Studies, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Modeling of a Series of O-Biphenyl Carbamates as Dual Modulators of Dopamine D3 Receptor and Fatty Acid Amide Hydrolase. J Med Chem 2017; 60:2287-2304. [DOI: 10.1021/acs.jmedchem.6b01578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Petracca R, Ponzano S, Bertozzi S, Sasso O, Piomelli D, Bandiera T, Bertozzi F. Progress in the development of β-lactams as N-Acylethanolamine Acid Amidase (NAAA) inhibitors: Synthesis and SAR study of new, potent N-O-substituted derivatives. Eur J Med Chem 2017; 126:561-575. [DOI: 10.1016/j.ejmech.2016.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
14
|
Qi C, Bao J, Wang J, Zhu H, Xue Y, Wang X, Li H, Sun W, Gao W, Lai Y, Chen JG, Zhang Y. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem Sci 2016; 7:6563-6572. [PMID: 28042460 PMCID: PMC5131395 DOI: 10.1039/c6sc02464e] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022] Open
Abstract
Asperterpenes A (1) and B (2), two 3,5-dimethylorsellinic acid-based meroterpenoids that contain a unique β-oriented Me-21 with an unprecedented 1,2,5-trimethyl-4,9-dioxobicyclo[3.3.1]non-2-ene-3-carboxylic acid moiety, were obtained from Aspergillus terreus in very limited amounts of 3.6 mg and 1.8 mg, respectively. The absolute structure of 1 was determined using X-ray diffraction. Because of the low yield of 1, a comprehensive characterization of the BACE1 inhibitory activities of 1 was completed via molecular biological, cell and animal studies guided by in silico target confirmation (ISTC). ISTC assays suggested that compounds 1 and 2 might be BACE1 inhibitors. In cell-based tests, asperterpenes A and B, as natural products, exhibited promising inhibitory activities against BACE1, with IC50 values of 78 and 59 nM, respectively. LY2811376 (the positive control), one of the most potent clinical BACE1 inhibitors, has shown an IC50 value of 260 nM. In vivo, compound 1 exhibited activity similar to that of LY2811376 against Alzheimer's disease (AD) in 3xTg AD mice. Taken together, these findings demonstrate that asperterpene A, which contains a novel carbon skeleton, is the first terpenoid to exhibit effective BACE1 inhibitory activity. Moreover, 1 represents a potential lead compound and a versatile scaffold for the development of drugs for the treatment of AD.
Collapse
Affiliation(s)
- Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Jian Bao
- School of Basic Medicine , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Xiaochuan Wang
- School of Basic Medicine , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Weixi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Yongji Lai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| | - Jian-Guo Chen
- School of Basic Medicine , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation , School of Pharmacy , Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China .
| |
Collapse
|
15
|
Rovira M, Soler M, Güell I, Wang MZ, Gómez L, Ribas X. Orthogonal Discrimination among Functional Groups in Ullmann-Type C-O and C-N Couplings. J Org Chem 2016; 81:7315-25. [PMID: 27249644 DOI: 10.1021/acs.joc.6b01035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The copper-catalyzed arylation of nucleophiles has been established as an efficient methodology for the formation of C-C and C-heteroatom bonds. Considering the advances during the last two decades, the ligand choice plays a key role in such transformations and can strongly influence the catalytic efficiency. The applicability of these Ullmann-type coupling reactions regarding the orthogonal selectivity of different functional groups constitutes a challenging subject for current synthetic strategies. Herein, we report a useful toolkit of Cu-based catalysts for the chemoselective arylation of a wide-range of nucleophiles in competitive reactions using aryl iodides and bromides. We show in this work that the arylation of all kinds of amides can be orthogonal to that of amines (aliphatic or aromatic) and phenol derivatives. This high chemoselectivity can be governed by the use of different ligands, yielding the desired coupling products under mild conditions. The selectivity trends are maintained for electronically biased iodobenzene and bromobenzene electrophiles. Radical clock experiments discard the occurrence of radical-based mechanisms.
Collapse
Affiliation(s)
- Mireia Rovira
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi , E-17003 Girona, Catalonia, Spain
| | - Marta Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi , E-17003 Girona, Catalonia, Spain
| | - Imma Güell
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi , E-17003 Girona, Catalonia, Spain
| | - Ming-Zheng Wang
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi , E-17003 Girona, Catalonia, Spain
| | - Laura Gómez
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi , E-17003 Girona, Catalonia, Spain.,Serveis Tècnics de Recerca (STR), Universitat de Girona, Parc Científic i Tecnològic de la UdG , Pic de Peguera 15, E17003 Girona, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi , E-17003 Girona, Catalonia, Spain
| |
Collapse
|
16
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
17
|
Nuzzi A, Fiasella A, Ortega JA, Pagliuca C, Ponzano S, Pizzirani D, Bertozzi SM, Ottonello G, Tarozzo G, Reggiani A, Bandiera T, Bertozzi F, Piomelli D. Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure–activity relationship (SAR) studies. Eur J Med Chem 2016; 111:138-59. [DOI: 10.1016/j.ejmech.2016.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/18/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
|
18
|
Micoli A, De Simone A, Russo D, Ottonello G, Colombano G, Ruda GF, Bandiera T, Cavalli A, Bottegoni G. Aryl and heteroaryl N-[4-[4-(2,3-substituted-phenyl)piperazine-1-yl]alkyl]carbamates with improved physico-chemical properties as dual modulators of dopamine D3 receptor and fatty acid amide hydrolase. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00590f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the physico-chemical profile of a MTDL series.
Collapse
Affiliation(s)
- A. Micoli
- CompuNet
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - A. De Simone
- School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - D. Russo
- PharmaChemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - G. Ottonello
- PharmaChemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - G. Colombano
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton
- UK
| | - G. F. Ruda
- Structural Genomics Consortium (SGC)
- University of Oxford
- Oxford OX3 7DQ
- UK
- Target Discovery Institute (TDI)
| | - T. Bandiera
- PharmaChemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | - A. Cavalli
- CompuNet
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- FaBit
| | - G. Bottegoni
- CompuNet
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- BiKi Technologies S.r.l
| |
Collapse
|
19
|
Bottegoni G, Veronesi M, Bisignano P, Kacker P, Favia AD, Cavalli A. Development and Application of a Virtual Screening Protocol for the Identification of Multitarget Fragments. ChemMedChem 2015; 11:1259-63. [PMID: 26663255 DOI: 10.1002/cmdc.201500521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/09/2022]
Abstract
In this study, we report on a virtual ligand screening protocol optimized to identify fragments endowed with activity at multiple targets. Thanks to this protocol, we were able to identify a fragment that displays activity in the low-micromolar range at both β-secretase 1 (BACE-1) and glycogen synthase kinase 3β (GSK-3β). These two structurally and physiologically unrelated enzymes likely contribute, through different pathways, to the onset of Alzheimer's disease (AD). Therefore, their simultaneous inhibition holds great potential in exerting a profound effect on AD. In perspective, the strategy outlined herein can be adapted to other target combinations.
Collapse
Affiliation(s)
- Giovanni Bottegoni
- CompuNet, Istituto Italiano di Tecnologia, 16163, Genova, Italy. .,BiKi Technologies srl, 16121, Genova, Italy.
| | - Marina Veronesi
- PharmaChemistry Facility, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Paola Bisignano
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA, 94158, USA
| | - Puneet Kacker
- Drug Repurposing Division, GVK Biosciences Pvt. Ltd., 500076, Hyderabad, India
| | - Angelo D Favia
- CompuNet, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, 16163, Genova, Italy.,FaBit, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
20
|
Prati F, De Simone A, Bisignano P, Armirotti A, Summa M, Pizzirani D, Scarpelli R, Perez DI, Andrisano V, Perez-Castillo A, Monti B, Massenzio F, Polito L, Racchi M, Favia AD, Bottegoni G, Martinez A, Bolognesi ML, Cavalli A. Multitarget drug discovery for Alzheimer's disease: triazinones as BACE-1 and GSK-3β inhibitors. Angew Chem Int Ed Engl 2014; 54:1578-82. [PMID: 25504761 DOI: 10.1002/anie.201410456] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 11/05/2022]
Abstract
Cumulative evidence strongly supports that the amyloid and tau hypotheses are not mutually exclusive, but concomitantly contribute to neurodegeneration in Alzheimer's disease (AD). Thus, the development of multitarget drugs which are involved in both pathways might represent a promising therapeutic strategy. Accordingly, reported here in is the discovery of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first class of molecules able to simultaneously modulate BACE-1 and GSK-3β. Notably, one triazinone showed well-balanced in vitro potencies against the two enzymes (IC50 of (18.03±0.01) μM and (14.67±0.78) μM for BACE-1 and GSK-3β, respectively). In cell-based assays, it displayed effective neuroprotective and neurogenic activities and no neurotoxicity. It also showed good brain permeability in a preliminary pharmacokinetic assessment in mice. Overall, triazinones might represent a promising starting point towards high quality lead compounds with an AD-modifying potential.
Collapse
Affiliation(s)
- Federica Prati
- Istituto Italiano di Tecnologia, D3 via Morego 30, 16163 Genova (Italy); Department of Pharmacy and Biotechonology, University of Bologna via Belmeloro 6/Selmi 3, 40126 Bologna (Italy)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prati F, De Simone A, Bisignano P, Armirotti A, Summa M, Pizzirani D, Scarpelli R, Perez DI, Andrisano V, Perez-Castillo A, Monti B, Massenzio F, Polito L, Racchi M, Favia AD, Bottegoni G, Martinez A, Bolognesi ML, Cavalli A. Multitarget Drug Discovery for Alzheimer's Disease: Triazinones as BACE-1 and GSK-3β Inhibitors. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|