1
|
Šebela M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. MASS SPECTROMETRY REVIEWS 2023; 42:1008-1031. [PMID: 34549449 DOI: 10.1002/mas.21733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Activity assays are indispensable for studying biochemical properties of enzymes. The purposes of measuring activity are wide ranging from a simple detection of the presence of an enzyme to kinetic experiments evaluating the substrate specificity, reaction mechanisms, and susceptibility to inhibitors. Common activity assay methods include spectroscopy, electrochemical sensors, or liquid chromatography coupled with various detection techniques. This review focuses on the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a growing and modern alternative, which offers high speed of analysis, sensitivity, versatility, possibility of automation, and cost-effectiveness. It may reveal reaction intermediates, side products or measure more enzymes at once. The addition of an internal standard or calculating the ratios of the substrate and product peak intensities and areas overcome the inherent inhomogeneous distribution of analyte and matrix in the sample spot, which otherwise results in a poor reproducibility. Examples of the application of MALDI-TOF MS for assaying hydrolases (including peptidases and β-lactamases for antibiotic resistance tests) and other enzymes are provided. Concluding remarks summarize advantages and challenges coming from the present experience, and draw future perspectives such as a screening of large libraries of chemical compounds for their substrate or inhibitory properties towards enzymes.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, and CATRIN, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Electron transfer in protein modifications: from detection to imaging. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Jiang S, Geng YX, Liu WJ, Wang ZY, Zhang CY. Construction of a phos-tag-directed self-assembled fluorescent magnetobiosensor for the simultaneous detection of multiple protein kinases. J Mater Chem B 2022; 10:9992-10000. [PMID: 36449302 DOI: 10.1039/d2tb01820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases play important roles in regulating various cellular processes and may function as potential diagnostic and therapeutic targets for various diseases including cancers. Herein, we construct a phos-tag-directed self-assembled fluorescent magnetobiosensor to simultaneously detect multiple protein kinases with good selectivity and high sensitivity. In the presence of protein kinases (i.e., PKA and Akt1), their substrate peptides (i.e., a FITC-labeled substrate peptide and a Cy5-labeled substrate peptide) are phosphorylated, and are then specifically recognized and captured by a biotinylated phos-tag to generate biotinylated substrate peptides for the assembly of magnetic bead (MB)-peptides-FITC/Cy5 nanostructures. After magnetic separation, the phosphorylated substrate peptides are disassembled from the MB-peptides-FITC/Cy5 nanostructures using deionized water at 80 °C, releasing FITC and Cy5 molecules. The released FITC and Cy5 molecules are detected by steady-state fluorescence measurements, with FITC indicating PKA and Cy5 indicating Akt1. This magnetobiosensor only involves one phos-tag without the requirement of radiolabeling, antibody screening, carboxypeptidase Y (CPY) cleavage, and cumbersome chemical/enzyme reactions. The introduction of magnetic separation can effectively eliminate the interference from complex real samples, generating an extremely low background signal. Moreover, this magnetobiosensor can accurately measure cellular protein kinase activities and screen inhibitors, with great potential for kinase-related biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Yi-Xuan Geng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
4
|
Cao Z, Yu LR. Mass Spectrometry-Based Proteomics for Biomarker Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:3-17. [PMID: 35437715 DOI: 10.1007/978-1-0716-2265-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proteomics plays a pivotal role in systems medicine, in which pharmacoproteomics and toxicoproteomics have been developed to address questions related to efficacy and toxicity of drugs. Mass spectrometry is the core technology for quantitative proteomics, providing the capabilities of identification and quantitation of thousands of proteins. The technology has been applied to biomarker discovery and understanding the mechanisms of drug action. Both stable isotope labeling of proteins or peptides and label-free approaches have been incorporated with multidimensional LC separation and tandem mass spectrometry (LC-MS/MS) to increase the coverage and depth of proteome analysis. A protocol of such an approach exemplified by dimethyl labeling in combination with 2D-LC-MS/MS is described. With further development of novel proteomic tools and increase in sample throughput, the full spectrum of mass spectrometry-based proteomic research will greatly advance systems medicine.
Collapse
Affiliation(s)
- Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
5
|
Cho H, Lee CS, Kim TH. Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor. Biomedicines 2021; 9:biomedicines9040423. [PMID: 33924719 PMCID: PMC8069798 DOI: 10.3390/biomedicines9040423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
We propose a simple label-free electrochemical biosensor for monitoring protein kinase activity and inhibition using a peptide-modified electrode. The biosensor employs cys-kemptide (CLRRASLG) as a substrate peptide which was immobilized on the surface of a gold electrode via the self-assembly of the thiol terminals in cysteine (C) residues. The interaction between protein kinase A (PKA) and adenosine 5′-triphosphate (ATP) on the cys-kemptide immobilized electrode can cause the transfer of ATP terminal phosphates to the peptide substrates at serine (S) residues, which alters the surface charge of the electrode, thus enabling monitoring of the PKA activity via measuring the interfacial electron transfer resistance with electrochemical impedance spectroscopy. The proposed sensor showed reliable, sensitive, and selective detection of PKA activity with a wide dynamic range of 0.1–100 U/mL and a detection limit of 56 mU/mL. The sensor also exhibited high selectivity, rendering it possible to screen PKA inhibitors. Moreover, the sensor can be employed to evaluate the activity and inhibition of PKA in real samples.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Korea; (H.C.); (C.-S.L.)
| | - Chang-Seuk Lee
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Korea; (H.C.); (C.-S.L.)
| | - Tae Hyun Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Korea; (H.C.); (C.-S.L.)
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
- Correspondence: ; Tel.: +82-41-530-4722; Fax: +82-41-530-1247
| |
Collapse
|
6
|
Jia C, Bai J, Liu Z, Gao S, Han Y, Yan H. Application of a titanium-based metal-organic framework to protein kinase activity detection and inhibitor screening. Anal Chim Acta 2020; 1128:99-106. [DOI: 10.1016/j.aca.2020.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
|
7
|
Ying YL, Yang J, Meng FN, Li S, Li MY, Long YT. A Nanopore Phosphorylation Sensor for Single Oligonucleotides and Peptides. RESEARCH 2019; 2019:1050735. [PMID: 31912023 PMCID: PMC6944226 DOI: 10.34133/2019/1050735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/07/2019] [Indexed: 11/07/2022]
Abstract
The phosphorylation of oligonucleotides and peptides plays a critical role in regulating virtually all cellular processes. To fully understand these complex and fundamental regulatory pathways, the cellular phosphorylate changes of both oligonucleotides and peptides should be simultaneously identified and characterized. Here, we demonstrated a single-molecule, high-throughput, label-free, general, and one-step aerolysin nanopore method to comprehensively evaluate the phosphorylation of both oligonucleotide and peptide substrates. By virtue of electrochemically confined effects in aerolysin, our results show that the phosphorylation accelerates the traversing speed of a negatively charged substrate for about hundreds of time while significantly enhances the translocation frequency of a positively charged substrate. Thereby, the kinase/phosphatase activity could be directly measured with the aerolysin nanopore from the characteristically dose-dependent event frequency of the substrates. By using this straightforward approach, a model T4 oligonucleotide kinase (PNK) further achieved the nanopore evaluation of its phosphatase activity and real-time monitoring of its phosphatase-catalyzed dephosphorylation at a single-molecule level. Our study provides a step forward to nanopore enzymology for analyzing the phosphorylation of both oligonucleotides and peptides with significant feasibility in fundamental biochemical researches, clinical diagnosis, and kinase/phosphatase-targeted drug discovery.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing 210023, China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng-Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing 210023, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
|
9
|
Ling L, Xiao C, Wang S, Guo L, Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI-TOF-MS. Talanta 2019; 200:236-241. [DOI: 10.1016/j.talanta.2019.03.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
|
10
|
Meng FN, Ying YL, Yang J, Long YT. A Wild-Type Nanopore Sensor for Protein Kinase Activity. Anal Chem 2019; 91:9910-9915. [DOI: 10.1021/acs.analchem.9b01570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Wu M, Fu L, Hu Y, Su J, Jing S, Zhou H, Zhan J. Multiplex On-Bead Isotope Dimethyl Labeling Coupled with Liquid Chromatography–High-Resolution Mass Spectrometry for Quantitative Analysis of Sulfonamides in Estuarine Ice. Anal Chem 2018; 90:12172-12179. [DOI: 10.1021/acs.analchem.8b03220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minghuo Wu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Lin Fu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Yufeng Hu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Jingyun Su
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Siyuan Jing
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Jingjing Zhan
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
12
|
Gu C, Gai P, Han L, Yu W, Liu Q, Li F. Enzymatic biofuel cell-based self-powered biosensing of protein kinase activity and inhibition via thiophosphorylation-mediated interface engineering. Chem Commun (Camb) 2018; 54:5438-5441. [DOI: 10.1039/c8cc02328j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed a facile and ultrasensitive EBFC-based self-powered biosensor of protein kinase A activity and inhibition via thiophosphorylation-mediated interface engineering.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Wen Yu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| |
Collapse
|
13
|
Wang Z, Yan Z, Wang F, Cai J, Guo L, Su J, Liu Y. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosens Bioelectron 2017; 97:107-114. [DOI: 10.1016/j.bios.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
14
|
Chen Y, Gao D, Bai H, Liu H, Lin S, Jiang Y. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1227-1235. [PMID: 27075876 DOI: 10.1007/s13361-016-1396-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R(2) > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yongli Chen
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Graduate School at Shenzhen, Peking University, Shenzhen, 518055, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Hangrui Bai
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Shuo Lin
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Graduate School at Shenzhen, Peking University, Shenzhen, 518055, China
| | - Yuyang Jiang
- National and Local United Engineering Laboratory for Personalized Antitumor Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
15
|
Zhang GY, Cai C, Cosnier S, Zeng HB, Zhang XJ, Shan D. Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. NANOSCALE 2016; 8:11649-11657. [PMID: 27218308 DOI: 10.1039/c6nr01206j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A Zr-based metal-organic framework with zinc tetrakis(carboxyphenyl)-porphyrin (ZnTCPP) groups (MOF-525-Zn) was utilized to develop a novel electrochemiluminescence (ECL) biosensor for highly sensitive protein kinase activity assay. In this work, in terms of ECL measurements and cyclic voltammetry, the cathodic ECL behaviors of MOF-525-Zn in aqueous media were thoroughly investigated for the first time. The photoelectric active groups ZnTCPP on the MOF-525-Zn frameworks could promote the generation of singlet oxygen ((1)O2) via a series of electrochemical and chemical reactions, resulting in a strong and stable red irradiation at 634 nm. Additionally, the surfactant tetraoctylammonium bromide (TOAB) further facilitated dissolved oxygen to interact with the active sites ZnTCPP of MOF-525-Zn. Furthermore, the inorganic Zr-O clusters of MOF-525-Zn were simultaneously served as the recognition sites of phosphate groups. And then, an ultrasensitive ECL sensor was proposed for protein kinase A (PKA) activity detection with a linear range from 0.01 to 20 U mL(-1) and a sensitive detection limit of 0.005 U mL(-1). This biosensor can also be applied for quantitative kinase inhibitor screening. Finally, it exhibits good performance with high stability and acceptable fabrication reproducibility, which provide a valuable strategy for clinic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guang-Yao Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chang Cai
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Serge Cosnier
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, UMR CNRS 5250, 570 rue de la Chimie, CS 40700, 38058 Grenoble cedex 9, France
| | - Hai-Bo Zeng
- Institute of Optoelectronics & Nanomaterials, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Ji Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
16
|
Yan Z, Wang Z, Miao Z, Liu Y. Dye-Sensitized and Localized Surface Plasmon Resonance Enhanced Visible-Light Photoelectrochemical Biosensors for Highly Sensitive Analysis of Protein Kinase Activity. Anal Chem 2015; 88:922-9. [PMID: 26648204 DOI: 10.1021/acs.analchem.5b03661] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel visible-light photoelectrochemical (PEC) biosensor based on localized surface plasmon resonance (LSPR) enhancement and dye sensitization was fabricated for highly sensitive analysis of protein kinase activity with ultralow background. In this strategy, DNA conjugated gold nanoparticles (DNA@AuNPs) were assembled on the phosphorylated kemptide modified TiO2/ITO electrode through the chelation between Zr(4+) ions and phosphate groups, then followed by the intercalation of [Ru(bpy)3](2+) into DNA grooves. The adsorbed [Ru(bpy)3](2+) can harvest visible light to produce excited electrons that inject into the TiO2 conduction band to form photocurrent under visible light irradiation. In addition, the photocurrent efficiency was further improved by the LSPR of AuNPs under the irradiation of visible light. Moreover, because of the excellent conductivity and large surface area of AuNPs that facilitate electron-transfer and accommodate large number of [Ru(bpy)3](2+), the photocurrent was significantly amplified, affording an extremely sensitive PEC analysis of kinase activity with ultralow background signals. The detection limit of as-proposed PEC biosensor was 0.005 U mL(-1) (S/N = 3). The biosensor also showed excellent performances for quantitative kinase inhibitor screening and PKA activities detection in MCF-7 cell lysates under forskolin and ellagic acid stimulation. The developed dye-sensitization and LSPR enhancement visible-light PEC biosensor shows great potential in protein kinases-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Zhiyong Yan
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Chemical Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University , Qingdao, Shandong 266071, China.,Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Zonghua Wang
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Chemical Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University , Qingdao, Shandong 266071, China
| | - Zhuang Miao
- Departments of Neurosurgery, China-Japan Union Hospital of Jilin University , Changchun, Jilin 130033, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|