1
|
Rabadán González I, McLean JT, Ostrovitsa N, Fitzgerald S, Mezzetta A, Guazzelli L, O'Shea DF, Scanlan EM. A thiol-ene mediated approach for peptide bioconjugation using 'green' solvents under continuous flow. Org Biomol Chem 2024; 22:2203-2210. [PMID: 38414440 DOI: 10.1039/d4ob00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Flow chemistry has emerged as an integral process within the chemical sector permitting energy efficient synthetic scale-up while improving safety and minimising solvent usage. Herein, we report the first applications of the photoactivated, radical-mediated thiol-ene reaction for peptide bioconjugation under continuous flow. Bioconjugation reactions employing deep eutectic solvents, bio-based solvents and fully aqueous systems are reported here for a range of biologically relevant peptide substrates. The use of a water soluble photoinitiator, Irgacure 2959, permitted synthesis of glycosylated peptides in fully aqueous conditions, obviating the need for addition of organic solvents and enhancing the green credentials of these rapid, photoactivated, bioconjugation reactions.
Collapse
Affiliation(s)
- Inés Rabadán González
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sheila Fitzgerald
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Donal F O'Shea
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
2
|
Goyard D, Ortiz AMS, Boturyn D, Renaudet O. Multivalent glycocyclopeptides: conjugation methods and biological applications. Chem Soc Rev 2022; 51:8756-8783. [PMID: 36193815 PMCID: PMC9575389 DOI: 10.1039/d2cs00640e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Click chemistry was extensively used to decorate synthetic multivalent scaffolds with glycans to mimic the cell surface glycocalyx and to develop applications in glycosciences. Conjugation methods such as oxime ligation, copper(I)-catalyzed alkyne-azide cycloaddition, thiol-ene coupling, squaramide coupling or Lansbury aspartylation proved particularly suitable to achieve this purpose. This review summarizes the synthetic strategies that can be used either in a stepwise manner or in an orthogonal one-pot approach, to conjugate multiple copies of identical or different glycans to cyclopeptide scaffolds (namely multivalent glycocyclopeptides) having different size, valency, geometry and molecular composition. The second part of this review will describe the potential of these structures to interact with various carbohydrate binding proteins or to stimulate immunity against tumor cells.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
3
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
4
|
Abstract
A growing theme in chemistry is the joining of multiple organic molecular building blocks to create functional molecules. Diverse derivatizable structures—here termed “scaffolds” comprised of “hubs”—provide the foundation for systematic covalent organization of a rich variety of building blocks. This review encompasses 30 tri- or tetra-armed molecular hubs (e.g., triazine, lysine, arenes, dyes) that are used directly or in combination to give linear, cyclic, or branched scaffolds. Each scaffold is categorized by graph theory into one of 31 trees to express the molecular connectivity and overall architecture. Rational chemistry with exacting numbers of derivatizable sites is emphasized. The incorporation of water-solubilization motifs, robust or self-immolative linkers, enzymatically cleavable groups and functional appendages affords immense (and often late-stage) diversification of the scaffolds. Altogether, 107 target molecules are reviewed along with 19 syntheses to illustrate the distinctive chemistries for creating and derivatizing scaffolds. The review covers the history of the field up through 2020, briefly touching on statistically derivatized carriers employed in immunology as counterpoints to the rationally assembled and derivatized scaffolds here, although most citations are from the past two decades. The scaffolds are used widely in fields ranging from pure chemistry to artificial photosynthesis and biomedical sciences.
Collapse
|
5
|
Gentil S, Pifferi C, Rousselot-Pailley P, Tron T, Renaudet O, Le Goff A. Clicked Bifunctional Dendrimeric and Cyclopeptidic Addressable Redox Scaffolds for the Functionalization of Carbon Nanotubes with Redox Molecules and Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1001-1011. [PMID: 33433232 DOI: 10.1021/acs.langmuir.0c02095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Carbon nanotube electrodes were modified with ferrocene and laccase using two different click reactions strategies and taking advantage of bifunctional dendrimers and cyclopeptides. Using diazonium functionalization and the efficiency of oxime ligation, the combination of both multiwalled carbon nanotube surfaces and modified dendrimers or cyclopeptides allows the access to a high surface coverage of ferrocene in the order of 50 nmol cm-2, a 50-fold increase compared to a classic click reaction without oxime ligation of these highly branched macromolecules. Furthermore, this original immobilization strategy allows the immobilization of mono- and bi-functionalized active multicopper enzymes, laccases, via copper(I)-catalyzed azide-alkyne cycloaddition. Electrochemical studies underline the high efficiency of the oxime-ligated dendrimers or cyclopeptides for the immobilization of redox entities on surfaces while being detrimental to electron tunneling with enzyme active sites despite controlled orientation.
Collapse
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | - Carlo Pifferi
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
6
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
7
|
Goyard D, Thomas B, Gillon E, Imberty A, Renaudet O. Heteroglycoclusters With Dual Nanomolar Affinities for the Lectins LecA and LecB From Pseudomonas aeruginosa. Front Chem 2019; 7:666. [PMID: 31632954 PMCID: PMC6783499 DOI: 10.3389/fchem.2019.00666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Multivalent structures displaying different instead of similar sugar units, namely heteroglycoclusters (hGCs), are stimulating the efforts of glycochemists for developing compounds with new biological properties. Here we report a four-step strategy to synthesize hexadecavalent hGCs displaying eight copies of αFuc and βGal. These compounds were tested for the binding to lectins LecA and LecB from Pseudomonas aeruginosa. While parent fucosylated (19) and galactosylated (20) homoclusters present nanomolar affinity with LecB and LecA, respectively, we observed that hGCs combining these sugars (11 and 13) maintain their binding potency with both lectins despite the presence of an unspecific sugar. The added multivalency is therefore not a barrier for efficient recognition by bacterial receptors and it opens the route for adding different sugars that can be selected for their immunomodulatory properties.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble, France
| | | | - Emilie Gillon
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
8
|
Lin CH, Wen HC, Chiang CC, Huang JS, Chen Y, Wang SK. Polyproline Tri-Helix Macrocycles as Nanosized Scaffolds to Control Ligand Patterns for Selective Protein Oligomer Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900561. [PMID: 30977296 DOI: 10.1002/smll.201900561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Multivalent ligand-receptor interactions play essential roles in biological recognition and signaling. As the receptor arrangement on the cell surface can alter the outcome of cell signaling and also provide spatial specificity for ligand binding, controlling the presentation of ligands has become a promising strategy to manipulate or selectively target protein receptors. The lack of adjustable universal tools to control ligand positions at the size of a few nanometers has prompted the development of polyproline tri-helix macrocycles as scaffolds to present ligands in designated patterns. Model lectin Helix pomatia agglutinin has shown selectivity toward the matching GalNAc ligand pattern matching its binding sites arrangement. The GalNAc pattern selectivity is also observed on intact asialoglycoprotein receptor oligomer on human hepatoma cells showing the pattern-selective interaction can be achieved not only on isolated protein oligomers but also the receptors arranged on the cell surface. As the scaffold design allows convenient creation of versatile ligand patterns, it can be expected as a promising tool to probe the arrangement of receptors on the cell surface and as nanomedicine to manipulate signaling or cell recognition.
Collapse
Affiliation(s)
- Cin-Hao Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Chuan Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jen-Sheng Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
9
|
Yokoi T, Ueda T, Tanimoto H, Morimoto T, Kakiuchi K. Site-selective conversion of azido groups at carbonyl α-positions into oxime groups leading triazide to a triple click conjugation scaffold. Chem Commun (Camb) 2019; 55:1891-1894. [DOI: 10.1039/c8cc09415b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This paper reports the selective conversion of alkyl azido groups at the carbonyl α-position into oximes, and one-pot triple click conjugation is demonstrated.
Collapse
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Tomomi Ueda
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Hiroki Tanimoto
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Tsumoru Morimoto
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Kiyomi Kakiuchi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| |
Collapse
|
10
|
Wen HC, Lin CH, Huang JS, Tsai CL, Chen TF, Wang SK. Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem Commun (Camb) 2019; 55:9124-9127. [PMID: 31298664 DOI: 10.1039/c9cc03124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DC-SIGN and langerin receptors both bind to oligomannose but lead to opposite effects upon encountering HIV. Because selective targeting of DC-SIGN can lead to anti-viral effects, we developed a glycoconjugate, which provides over 4800-fold selectivity for DC-SIGN over langerin, by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold.
Collapse
Affiliation(s)
- Hsin-Chuan Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Gade M, Alex C, Leviatan Ben-Arye S, Monteiro JT, Yehuda S, Lepenies B, Padler-Karavani V, Kikkeri R. Microarray Analysis of Oligosaccharide-Mediated Multivalent Carbohydrate-Protein Interactions and Their Heterogeneity. Chembiochem 2018; 19:10.1002/cbic.201800037. [PMID: 29575424 PMCID: PMC6949124 DOI: 10.1002/cbic.201800037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Carbohydrate-protein interactions (CPIs) are involved in a wide range of biological phenomena. Hence, the characterization and presentation of carbohydrate epitopes that closely mimic the natural environment is one of the long-term goals of glycosciences. Inspired by the multivalency, heterogeneity and nature of carbohydrate ligand-mediated interactions, we constructed a combinatorial library of mannose and galactose homo- and hetero-glycodendrons to study CPIs. Microarray analysis of these glycodendrons with a wide range of biologically important plant and animal lectins revealed that oligosaccharide structures and heterogeneity interact with each other to alter binding preferences.
Collapse
Affiliation(s)
- Madhuri Gade
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| | - Catherine Alex
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| | - Shani Leviatan Ben-Arye
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - João T. Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Bünteweg 17, 30559 Hannover (Germany)
| | - Sharon Yehuda
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Bünteweg 17, 30559 Hannover (Germany)
| | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| |
Collapse
|
12
|
Daskhan GC, Tran HTT, Meloncelli PJ, Lowary TL, West LJ, Cairo CW. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy. Bioconjug Chem 2018; 29:343-362. [PMID: 29237123 DOI: 10.1021/acs.bioconjchem.7b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Peter J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Lori J West
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Department of Pediatrics, Surgery, Medical Microbiology and Immunology, and Laboratory Medicine and Pathology, Alberta Transplant Institute, University of Alberta Edmonton, Alberta T6G 2E1, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
13
|
Pifferi C, Thomas B, Goyard D, Berthet N, Renaudet O. Heterovalent Glycodendrimers as Epitope Carriers for Antitumor Synthetic Vaccines. Chemistry 2017; 23:16283-16296. [PMID: 28845889 PMCID: PMC6175327 DOI: 10.1002/chem.201702708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 01/01/2023]
Abstract
The large majority of TACA-based (TACA=Tumor-Associated Carbohydrate Antigens) antitumor vaccines target only one carbohydrate antigen, thereby often resulting in the incomplete destruction of cancer cells. However, the morphological heterogeneity of the tumor glycocalix, which is in constant evolution during malignant transformation, is a crucial point to consider in the design of vaccine candidates. In this paper, an efficient synthetic strategy based on orthogonal chemoselective ligations to prepare fully synthetic glycosylated cyclopeptide scaffolds grafted with both Tn and TF antigen analogues is reported. To evaluate their ability to be recognized as tumor antigens, direct interaction ELISA assays have been performed with the anti-Tn monoclonal antibody 9A7. Although both heterovalent structures showed binding capacities with 9A7, the presence of the second TF epitope did not interfere with the recognition of Tn except in one epitope arrangement. This heterovalent glycosylated structure thus represents an attractive epitope carrier to be further functionalized with T-cell peptide epitopes.
Collapse
Affiliation(s)
- Carlo Pifferi
- Univ. Grenoble AlpesCNRSDCM UMR 525038000GrenobleFrance
| | | | - David Goyard
- Univ. Grenoble AlpesCNRSDCM UMR 525038000GrenobleFrance
| | | | - Olivier Renaudet
- Univ. Grenoble AlpesCNRSDCM UMR 525038000GrenobleFrance
- Institut Universitaire de France103 boulevard Saint-Michel75005ParisFrance
| |
Collapse
|
14
|
Bagul RS, Hosseini MM, Shiao TC, Roy R. “Onion peel” glycodendrimer syntheses using mixed triazine and cyclotriphosphazene scaffolds. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expeditious synthetic protocol for the construction of glycodendrimers is illustrated using the newly discovered “onion peel” strategy. The onion peel approach and orthogonal coupling strategies were accomplished with rationally design sequential modifications of cyanuric acid. Carefully chosen building blocks and their effective attachment by chemoselective atom economical click reactions, namely Cu (I) azide–alkyne cycloaddition reaction (CuAAC) and photocatalyzed thiol-ene reaction (TEC), allowed rapid build-up of glycodendrimers in contrast to traditional dendrimers syntheses that are based on the repetitive use of identical building blocks to form each layer. The newly formed glycodendrimers were evaluated for their capacity to cross-link carbohydrate-lectin interactions using dynamic light scattering (DLS). Rapid increase in particle size was observed as a function of time when compared to their monomer counterparts resulting from the multivalent lectin cross-linking ability of the new glycodendrimers.
Collapse
Affiliation(s)
- Rahul S. Bagul
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Maryam M. Hosseini
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
15
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
16
|
Pifferi C, Daskhan GC, Fiore M, Shiao TC, Roy R, Renaudet O. Aminooxylated Carbohydrates: Synthesis and Applications. Chem Rev 2017; 117:9839-9873. [PMID: 28682060 DOI: 10.1021/acs.chemrev.6b00733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Gour Chand Daskhan
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Michele Fiore
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France.,Institut Universitaire de France , 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
17
|
Ortiz Mellet C, Nierengarten JF, García Fernández JM. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. J Mater Chem B 2017; 5:6428-6436. [PMID: 32264409 DOI: 10.1039/c7tb00860k] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The last decade has witnessed a series of discoveries that question the traditional paradigm of multivalency as a "safe" strategy to enhance the binding affinity of a lectin receptor to its cognate carbohydrate ligand. Upon following the initial reports on the supplementary effects operating in the presence of a third carbohydrate species (heteromultivalent effect), the observation of functional promiscuity of glyco(mimetic)ligands elicited by (hetero)multivalency, spreading from lectins to glycoprocessing enzymes (inhibitory multivalent effect), has raised concerns about the potential consequences of glyconanomaterials binding to non-cognate proteins and creating messiness or noise in the processes they participate in. Carbon-based glycomaterials, specifically glyconanodiamonds and glycofullerenes, have been instrumental in increasing our awareness of the frequency of these lectin-enzyme crosstalk behaviours elicited by multivalency, driving a reformulation of the rules and concepts in glycoscience towards a "generalized multivalency" scenario.
Collapse
Affiliation(s)
- Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41011 Sevilla, Spain.
| | | | | |
Collapse
|
18
|
García-Moreno MI, Ortega-Caballero F, Rísquez-Cuadro R, Ortiz Mellet C, García Fernández JM. The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry 2017; 23:6295-6304. [PMID: 28240441 DOI: 10.1002/chem.201700470] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 01/06/2023]
Abstract
The vision of multivalency as a strategy limited to achieve affinity enhancements between a protein receptor and its putative sugar ligand (glycotope) has proven too simplistic. On the one hand, binding of a glycotope in a dense glycocalix-like construct to a lectin partner has been shown to be sensitive to the presence of a third sugar entity (heterocluster effect). On the other hand, several carbohydrate processing enzymes (glycosidases and glycosyltransferases) have been found to be also responsive to multivalent presentations of binding partners (multivalent enzyme inhibition), a phenomenon first discovered for iminosugar-type inhibitory species (inhitopes) and recently demonstrated for multivalent carbohydrate constructs. By assessing a series of homo- and heteroclusters combining α-d-glucopyranosyl-related glycotopes and inhitopes, it was shown that multivalency and heteromultivalency govern both kinds of events, allowing for activation, deactivation or enhancement of specific recognition phenomena towards a spectrum of lectin and glycosidase partners in a multimodal manner. This unified scenario originates from the ability of (hetero)multivalent architectures to trigger glycosidase binding modes that are reminiscent of those harnessed by lectins, which should be considered when profiling the biological activity of multivalent architectures.
Collapse
Affiliation(s)
- M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Rocío Rísquez-Cuadro
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-University of Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
19
|
Bonnat L, Bar L, Génnaro B, Bonnet H, Jarjayes O, Thomas F, Dejeu J, Defrancq E, Lavergne T. Template-Mediated Stabilization of a DNA G-Quadruplex formed in the HIV-1 Promoter and Comparative Binding Studies. Chemistry 2017; 23:5602-5613. [PMID: 28264144 DOI: 10.1002/chem.201700417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 02/06/2023]
Abstract
G-rich DNA oligonucleotides derived from the promoter region of the HIV-1 long terminal repeat (LTR) were assembled onto an addressable cyclopeptide platform through sequential oxime ligation, a thiol-iodoacetamide SN2 reaction, and copper-catalyzed azide-alkyne cycloaddition reactions. The resulting conjugate was shown to fold into a highly stable antiparallel G4 architecture as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. The binding affinities of six state-of-the-art G4-binding ligands toward the HIV-G4 structure were compared to those obtained with a telomeric G4 structure and a hairpin structure. Surface plasmon resonance binding analysis provides new insights into the binding mode of broadly exploited G4 chemical probes and further suggests that potent and selective recognition of viral G4 structures of functional significance might be achieved.
Collapse
Affiliation(s)
- Laureen Bonnat
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, DPM UMR-5063, 38000, Grenoble, France
| | - Laure Bar
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Béatrice Génnaro
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Hugues Bonnet
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Olivier Jarjayes
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Eric Defrancq
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| | - Thomas Lavergne
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, 38000, Grenoble, France
| |
Collapse
|
20
|
Lee HG, Lautrette G, Pentelute BL, Buchwald SL. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angew Chem Int Ed Engl 2017; 56:3177-3181. [PMID: 28206688 DOI: 10.1002/anie.201611202] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 11/09/2022]
Abstract
A mild method for the arylation of lysine in an unprotected peptide is presented. In the presence of a preformed biarylphosphine-supported palladium(II)-aryl complex and a weak base, lysine amino groups underwent C-N bond formation at room temperature. The process generally exhibited high selectivity for lysine over other amino acids containing nucleophilic side chains and was applicable to the conjugation of a variety of organic compounds, including complex drug molecules, with an array of peptides. Finally, this method was also successfully applied to the formation of cyclic peptides by macrocyclization.
Collapse
Affiliation(s)
- Hong Geun Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guillaume Lautrette
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Lee HG, Lautrette G, Pentelute BL, Buchwald SL. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611202] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hong Geun Lee
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Guillaume Lautrette
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
22
|
Bagul RS, Hosseini M, Shiao TC, Saadeh NK, Roy R. Heterolayered hybrid dendrimers with optimized sugar head groups for enhancing carbohydrate–protein interactions. Polym Chem 2017. [DOI: 10.1039/c7py01044c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Novel heterolayered (“onion peel”) hybrid glycodendrimers containing optimised sugar head groups with galactoside and mannoside units with affinities for two different lectins.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Pharmaqam
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
23
|
Daskhan GC, Pifferi C, Renaudet O. Synthesis of a New Series of Sialylated Homo- and Heterovalent Glycoclusters by using Orthogonal Ligations. ChemistryOpen 2016; 5:477-484. [PMID: 27777841 PMCID: PMC5062014 DOI: 10.1002/open.201600062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/19/2022] Open
Abstract
The synthesis of heteroglycoclusters (hGCs) is being subjected to rising interest, owing to their potential applications in glycobiology. In this paper, we report an efficient and straightforward convergent protocol based on orthogonal chemoselective ligations to prepare structurally well-defined cyclopeptide-based homo- and heterovalent glycoconjugates displaying 5-N-acetyl-neuraminic acid (Neu5Ac), galactose (Gal), and/or N-acetyl glucosamine (GlcNAc). We first used copper-catalyzed azide-alkyne cycloaddition and/or thiol-ene coupling to conjugate propargylated α-sialic acid 3, β-GlcNAc thiol 5, and β-Gal thiol 6 onto cyclopeptide scaffolds 7-9 to prepare tetravalent homoglycoclusters (10-12) and hGCs (13-14) with 2:2 combinations of sugars. In addition, we have demonstrated that 1,2-diethoxycyclobutene-3,4-dione can be used as a bivalent linker to prepare various octavalent hGCs (16, 19, and 20) in a controlled manner from these tetravalent structures.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), CNRS, DCM 38000 Grenoble France
| | - Carlo Pifferi
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), CNRS, DCM 38000 Grenoble France
| | - Olivier Renaudet
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), CNRS, DCM 38000 Grenoble France; Institut Universitaire de France 103 boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
24
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
25
|
Müller C, Despras G, Lindhorst TK. Organizing multivalency in carbohydrate recognition. Chem Soc Rev 2016; 45:3275-302. [DOI: 10.1039/c6cs00165c] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Thomas B, Pifferi C, Daskhan GC, Fiore M, Berthet N, Renaudet O. Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations. Org Biomol Chem 2015; 13:11529-38. [PMID: 26464062 DOI: 10.1039/c5ob01870f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and β propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and β GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 μM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.
Collapse
|
27
|
Hu Y, Tabor RF, Wilkinson BL. Sweetness and light: design and applications of photo-responsive glycoconjugates. Org Biomol Chem 2015; 13:2216-25. [DOI: 10.1039/c4ob02296c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoswitchable glycoconjugates are promising tools for studying biomolecular interactions and for the development of stimuli-responsive materials.
Collapse
Affiliation(s)
- Yingxue Hu
- School of Chemistry
- Monash University
- Australia
| | | | | |
Collapse
|
28
|
Kanfar N, Bartolami E, Zelli R, Marra A, Winum JY, Ulrich S, Dumy P. Emerging trends in enzyme inhibition by multivalent nanoconstructs. Org Biomol Chem 2015; 13:9894-906. [DOI: 10.1039/c5ob01405k] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review highlights the recent implementation of multivalent nanoconstructs in enzyme inhibition and discusses the emerging trends in their design and identification.
Collapse
Affiliation(s)
- Nasreddine Kanfar
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
29
|
Jouanno LA, Chevalier A, Sekkat N, Perzo N, Castel H, Romieu A, Lange N, Sabot C, Renard PY. Kondrat’eva Ligation: Diels–Alder-Based Irreversible Reaction for Bioconjugation. J Org Chem 2014; 79:10353-66. [DOI: 10.1021/jo501972m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laurie-Anne Jouanno
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Arnaud Chevalier
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Nawal Sekkat
- Section
des Sciences Pharmaceutiques, Université de Genève, Université de Lausanne, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Nicolas Perzo
- Inserm
U982, Laboratory of Neuronal and Neuroendocrine Communication and
Differentiation (DC2N), Astrocyte and Vascular Niche, Institute of
Research and Biomedical Innovation (IRIB), PRES Normandy University, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France
- North-West Cancéropole (CNO), 59008 Lille Cedex, France
| | - Hélène Castel
- Inserm
U982, Laboratory of Neuronal and Neuroendocrine Communication and
Differentiation (DC2N), Astrocyte and Vascular Niche, Institute of
Research and Biomedical Innovation (IRIB), PRES Normandy University, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France
- North-West Cancéropole (CNO), 59008 Lille Cedex, France
| | - Anthony Romieu
- ICMUB,
UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Norbert Lange
- Section
des Sciences Pharmaceutiques, Université de Genève, Université de Lausanne, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Cyrille Sabot
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| | - Pierre-Yves Renard
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|