1
|
Zhang P, Li Q, Li Z, Shi X, Wang H, Huo C, Zhou L, Kuang X, Lin K, Cao Y, Deng J, Yu C, Chen X, Miao J, Xing X. Intrinsic-strain-induced ferroelectric order and ultrafine nanodomains in SrTiO 3. Proc Natl Acad Sci U S A 2024; 121:e2400568121. [PMID: 38857392 PMCID: PMC11194550 DOI: 10.1073/pnas.2400568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Nano ferroelectrics holds the potential application promise in information storage, electro-mechanical transformation, and novel catalysts but encounters a huge challenge of size limitation and manufacture complexity on the creation of long-range ferroelectric ordering. Herein, as an incipient ferroelectric, nanosized SrTiO3 was indued with polarized ordering at room temperature from the nonpolar cubic structure, driven by the intrinsic three-dimensional (3D) tensile strain. The ferroelectric behavior can be confirmed by piezoelectric force microscopy and the ferroelectric TO1 soft mode was verified with the temperature stability to 500 K. Its structural origin comes from the off-center shift of Ti atom to oxygen octahedron and forms the ultrafine head-to-tail connected 90° nanodomains about 2 to 3 nm, resulting in an overall spontaneous polarization toward the short edges of nanoparticles. According to the density functional theory calculations and phase-field simulations, the 3D strain-related dipole displacement transformed from [001] to [111] and segmentation effect on the ferroelectric domain were further proved. The topological ferroelectric order induced by intrinsic 3D tensile strain shows a unique approach to get over the nanosized limitation in nanodevices and construct the strong strain-polarization coupling, paving the way for the design of high-performance and free-assembled ferroelectric devices.
Collapse
Affiliation(s)
- Peixi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Zhiguo Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xiaoming Shi
- Department of Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Haoyu Wang
- Department of Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Chuanrui Huo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541006, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
2
|
Safaruddin AS, Bermundo JPS, Wu C, Uenuma M, Yamamoto A, Kimura M, Uraoka Y. High- k Solution-Processed Barium Titanate/Polysiloxane Nanocomposite for Low-Temperature Ferroelectric Thin-Film Transistors. ACS OMEGA 2023; 8:29939-29948. [PMID: 37636973 PMCID: PMC10448671 DOI: 10.1021/acsomega.2c08142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Ferroelectric nanoparticles have attracted much attention for numerous electronic applications owing to their nanoscale structure and size-dependent behavior. Barium titanate (BTO) nanoparticles with two different sizes (20 and 100 nm) were synthesized and mixed with a polysiloxane (PSX) polymer forming a nanocomposite solution for high-k nanodielectric films. Transition from the ferroelectric to paraelectric phase of BTO with different nanoparticle dimensions was evaluated through variable-temperature X-ray diffraction measurement accompanied by electrical analysis using capacitor structures. A symmetric single 200 peak was constantly detected at different measurement temperatures for the 20 nm BTO sample, marking a stable cubic crystal structure. 100 nm BTO on the other hand shows splitting of 200/002 peaks correlating to a tetragonal crystal form which further merged, thus forming a single 200 peak at higher temperatures. Smaller BTO dimension exhibits clockwise hysteresis in capacitance-voltage measurement and correlates to a cubic crystal structure which possesses paraelectric properties. Bigger BTO dimension in contrast, demonstrates counterclockwise hysteresis owing to their tetragonal crystal form. Through further Rietveld refinement analysis, we found that the tetragonality (c/a) of 100 nm BTO decreases at a higher temperature which narrows the hysteresis window. A wider hysteresis window was observed when utilizing 100 nm BTO compared to 20 nm BTO even at a lower loading ratio. The present findings imply different hysteresis mechanisms for BTO nanoparticles with varying dimensions which is crucial in understanding the role of how the BTO size tunes the crystal structures for integration in thin-film transistor devices.
Collapse
Affiliation(s)
- Aimi Syairah Safaruddin
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Juan Paolo S. Bermundo
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Chuanjun Wu
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Mutsunori Uenuma
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Atsuko Yamamoto
- Display
Solutions Patterning Materials, Merck Electronics
Ltd., Shizuoka 437-1412, Japan
| | - Mutsumi Kimura
- Department
of Electronics and Informatics, Ryukoku
University, Seta 520-2194, Japan
| | - Yukiharu Uraoka
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
3
|
Sapkota B, Ogut S, Klie RF. Nanoscale Electron Energy Loss Spectroscopy (EELS) Study of Phase Transition in Barium Titanate (BaTiO3). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1676-1677. [PMID: 37613811 DOI: 10.1093/micmic/ozad067.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Bibash Sapkota
- University of Illinois Chicago, Department of Physics, Chicago, IL, United States
| | - Serdar Ogut
- University of Illinois Chicago, Department of Physics, Chicago, IL, United States
| | - Robert F Klie
- University of Illinois Chicago, Department of Physics, Chicago, IL, United States
| |
Collapse
|
4
|
Wang T, Pang X, Liu B, Liu J, Shen J, Zhong C. A Facile and Eco-Friendly Hydrothermal Synthesis of High Tetragonal Barium Titanate with Uniform and Controllable Particle Size. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114191. [PMID: 37297325 DOI: 10.3390/ma16114191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The preparation of tetragonal barium titanate (BT) powders with uniform and suitable particle sizes is a significant prerequisite for ultra-thin and highly integrated multilayer ceramic capacitors (MLCCs). However, the balance of high tetragonality and controllable particle size remains a challenge, which limits the practical application of BT powders. Herein, the effects of different proportions of hydrothermal medium composition on the hydroxylation process are explored to obtain high tetragonality. The high tetragonality of BT powders under the optimal solvent condition of water:ethanol:ammonia solution of 2:2:1 is around 1.009 and increases with the particle size. Meanwhile, the good uniformity and dispersion of BT powders with particle sizes of 160, 190, 220, and 250 nm benefit from the inhibition of ethanol on the interfacial activity of BT particles (BTPs). The core-shell structure of BTPs is revealed by different lattice fringe spacings of the core and edge and the crystal structure by reconstructed atomic arrangement, which reasonably explains the trend between tetragonality and average particle size. These findings are instructive for the related research on the hydrothermal process of BT powders.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoxiao Pang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Shen
- Chongqing Newcent New Materials Co., Ltd., Chongqing 401147, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
5
|
Li Q, Lin K, Liu Z, Hu L, Cao Y, Chen J, Xing X. Chemical Diversity for Tailoring Negative Thermal Expansion. Chem Rev 2022; 122:8438-8486. [PMID: 35258938 DOI: 10.1021/acs.chemrev.1c00756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Negative thermal expansion (NTE), referring to the lattice contraction upon heating, has been an attractive topic of solid-state chemistry and functional materials. The response of a lattice to the temperature field is deeply rooted in its structural features and is inseparable from the physical properties. For the past 30 years, great efforts have been made to search for NTE compounds and control NTE performance. The demands of different applications give rise to the prominent development of new NTE systems covering multifarious chemical substances and many preparation routes. Even so, the intelligent design of NTE structures and efficient tailoring for lattice thermal expansion are still challenging. However, the diverse chemical routes to synthesize target compounds with featured structures provide a large number of strategies to achieve the desirable NTE behaviors with related properties. The chemical diversity is reflected in the wide regulating scale, flexible ways of introduction, and abundant structure-function insights. It inspires the rapid growth of new functional NTE compounds and understanding of the physical origins. In this review, we provide a systematic overview of the recent progress of chemical diversity in the tailoring of NTE. The efficient control of lattice and deep structural deciphering are carefully discussed. This comprehensive summary and perspective for chemical diversity are helpful to promote the creation of functional zero-thermal-expansion (ZTE) compounds and the practical utilization of NTE.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhanning Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Zou D, Li J, Deng J, Jin Y, Chen M. Continuous Preparation of Size-Controllable BaTiO3 Nanoparticles in a Rotor–Stator Spinning Disk Reactor. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Danrui Zou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Jun Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Jie Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Yang Jin
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Ming Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| |
Collapse
|
7
|
Clabel H JL, Nicolodelli G, Lozano C G, G Rivera VA, Ferreira SO, Pinto AH, Li MS, Marega E. The extrinsic nature of double broadband photoluminescence from the BaTiO 3 perovskite: generation of white light emitters. Phys Chem Chem Phys 2021; 23:18694-18706. [PMID: 34612407 DOI: 10.1039/d1cp01765a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The electronic properties of BaTiO3 perovskite oxides are not completely understood, despite their excellent electro-optical performance and potential for light generation. Particularly, when there is multiple peak formation in the photoluminescence spectra, their origins are not discussed. Their luminescence spectra reveal an unexpected thermodynamic relationship between the core excitonic states and the surface of the BaTiO3. These results give a broad insight into the origins of the emission properties of perovskite oxides. The self-trapped excitons contribution to the broadbands highlights their extrinsic origin. Through spectroscopy techniques and parallel factor analysis (PARAFAC) modeling, we demonstrate that additional broadbands are sensitive to extrinsic defects, type ν-CH3, a product of decomposition of 2-propanol. The presence of C-H bonds shows the dependence with the calcination temperature and the increase of the lattice expansion coefficient until 4.7 × 10-6 K-1 resulting in the contribution to the change of band gap with the temperature ((dEg/dT)P). In this work, we correlated the electronic properties of BaTiO3 with intrinsic and extrinsic defects and elucidated the presence of additional broadbands. This approach differentiates the contributions of excitonic states and surfaces, which is necessary to understand the electronic properties of perovskite oxides.
Collapse
Affiliation(s)
- J L Clabel H
- Physics Institute of São Carlos, University of São Paulo, P. O. Box 369, 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sun J, Li Q, Zhu H, Liu Z, Lin K, Wang N, Zhang Q, Gu L, Deng J, Chen J, Xing X. Negative-Pressure-Induced Large Polarization in Nanosized PbTiO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002968. [PMID: 33118254 DOI: 10.1002/adma.202002968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Ferroelectric materials usually undergo decay with particle size decreasing into the nanoscale. At the critical value, the crystal structure undergoes a transition from the ferroelectric to paraelectric phase and the ferroelectricity vanishes. It is a big issue to sufficiently maintain strong ferroelectricity at the nanoscale. Herein, it is reported that synthesized 0D freestanding PbTiO3 nanoparticles (NPs) present negative pressure along the c axis (Δc/cbulk × 100% = -2.406), inducing large spontaneous polarization PS (71.2 µC cm-2 in 12 nm). Further local structural studies by atomic pair distribution functions and extended X-ray absorption fine structure indicate the structural evolution of nanosized PbTiO3 . High-angle annular dark-field STEM images reveal the existence of preponderant PbO-terminations on the surface of the PbTiO3 NPs. Ab initio calculation reveals the enhanced hybridization between Pb and O ions, which gives rise to the negative pressure and tensile stress to stabilize the high tetragonality and large polarization. The present work demonstrates an untraditional route to enhance the ferroelectricity and related properties in functional nanostructured materials, being of significance to nanodevices.
Collapse
Affiliation(s)
- Jing Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhanning Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Na Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Chamorro N, Martínez-Esaín J, Puig T, Obradors X, Ros J, Yáñez R, Ricart S. Hybrid approach to obtain high-quality BaMO 3 perovskite nanocrystals. RSC Adv 2020; 10:28872-28878. [PMID: 35520062 PMCID: PMC9055805 DOI: 10.1039/d0ra03861j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 01/13/2023] Open
Abstract
A novel hybrid solvothermal approach for perovskite nanocrystal formation via accurate control of the hydrolytic process is reported. This new synthetic methodology sets a whole general route to successfully tune the sizes of high-quality BaMO3 (M = Ti4+, Zr4+, and Hf4+) perovskite nanocrystals. Purely cubic-phase nanocrystals (stable in alcohol media) were obtained using controlled water amounts, combining the well-known aqueous sol-gel process with the classic solvothermal method. Exhaustive optimizations revealed feasibility of a fast (1 hour) and reproducible synthesis with small variations in the crystal size or agglomeration parameters. The study also reveals water content as the pivotal factor to achieve this wide range of sizes through a controlled hydrolytic step. Finally, the study of the hydrolytic process made it possible to shed some light on mechanistic insights of this synthetic route.
Collapse
Affiliation(s)
- Natalia Chamorro
- Departament de Química, Universitat Autònoma de Barcelona 08193 Bellaterra Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) 08193 Bellaterra Spain
| | - Jordi Martínez-Esaín
- Departament de Química, Universitat Autònoma de Barcelona 08193 Bellaterra Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) 08193 Bellaterra Spain
| | - Teresa Puig
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) 08193 Bellaterra Spain
| | - Xavier Obradors
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) 08193 Bellaterra Spain
| | - Josep Ros
- Departament de Química, Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Ramón Yáñez
- Departament de Química, Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Susagna Ricart
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) 08193 Bellaterra Spain
| |
Collapse
|
10
|
Jia H, Zhou W, Nan H, Dong J, Qing Y, Luo F, Zhu D. Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2019.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Abstract
Nanosolids usually exhibit a variety of peculiar physical features due to the size effect. The unique surface electronic states and coordination structures of nanosolids make them particularly important as promising functional materials. After several decades of research effort on the preparation processes and formation mechanisms of nanomaterials, the attention of nanoscience has been shifted to their functionalization and utilization. In the development of nanodevices, the thermal expansion matching between nanosized components is becoming increasingly important for the selection of units and design of nanodevices. In nanosolids, particularities of bonding features and coordination environments lead to size-dependent thermal expansion behavior that is significantly different from the behavior of their bulk counterparts. Thus, size tuning becomes one of the most efficient techniques in tailoring lattice thermal expansion. Unlike the traditional tailoring methods like chemical doping, the modification of chemical bonds and lattice vibration modes mainly contributing to the abnormal thermal expansion of nanosolids can be realized by adjustment of local coordination on the surface and surface/interface lattice strain. With the introduction of the nanosizing effect, the functional properties of nanosolids can be thoroughly remolded, which provides a huge space for functional applications of negative thermal expansion (NTE) nanosolids. However, understanding the origin of novel thermal expansion in nanosolids remains a challenging issue because of the lack of knowledge of precise atomic arrangements at both long-range and local structure levels. In this Account, by virtue of various advanced characterization techniques, we provide a comprehensive understanding at the atomic level of the abnormal thermal expansion behaviors in nanosized PbTiO3-based compounds, oxides, fluorides, and bimetallic alloys. Our results demonstrate that nanoscale structural features can be used to alter the spontaneous polarization, surficial/interfacial coordination, local lattice symmetry, and elemental distribution, resulting in the crossover of thermal expansion from the bulk and the generation of zero thermal expansion (ZTE). Furthermore, structural peculiarities in nanosolids, e.g., the lack of long-range coherence, abnormal surficial/interfacial bonding, lattice imperfection, and distribution of local phases, open the door for local-scale manipulations of the physical properties of electronic structure and lattice vibration during adjustment of thermal expansion. For the development of nanodevices with high thermostability, atomic-level information on the nanostructure thermal evolution provides a guideline for intelligent designs of the functional components and matrix. Understanding of the structural transformation in nanosolids will help future exploration of functional nanomaterials based on short-range atomistic design and optimization.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - He Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Genchi GG, Ceseracciu L, Marino A, Labardi M, Marras S, Pignatelli F, Bruschini L, Mattoli V, Ciofani G. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells. Adv Healthc Mater 2016; 5:1808-20. [PMID: 27283784 DOI: 10.1002/adhm.201600245] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/28/2016] [Indexed: 12/15/2022]
Abstract
Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoelectric substrates. For the first time in the literature, this study demonstrates the suitability of polymer/ceramic composite films and US for neuronal stimulation through direct piezoelectric effect.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Luca Ceseracciu
- Istituto Italiano di Tecnologia Smart Materials Nanophysics Department Via Morego 30 16163 Genova Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Scuola Superiore Sant'Anna The BioRobotics Institute Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | | | - Sergio Marras
- Istituto Italiano di Tecnologia Nanochemistry Department Via Morego 30 16163 Genova Italy
| | - Francesca Pignatelli
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Luca Bruschini
- University Hospital of Pisa ENT Audiology and Phoniatry Unit Via Paradisa 3 56124 Pisa Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Politecnico di Torino Department of Mechanical and Aerospace Engineering Corso Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
13
|
Sheng J, Wang L, Li S, Yin B, Liu X, Fei WD. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite. Sci Rep 2016; 6:27118. [PMID: 27255420 PMCID: PMC4891676 DOI: 10.1038/srep27118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022] Open
Abstract
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.
Collapse
Affiliation(s)
- Jie Sheng
- State Key Laboratory for Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 P.R. China
| | - Lidong Wang
- State Key Laboratory for Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 P.R. China
| | - Shouwei Li
- Department of Materials Science and Engineering, Shenzhen Graduated School, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Benke Yin
- Department of Materials Science and Engineering, Shenzhen Graduated School, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Xiangli Liu
- Department of Materials Science and Engineering, Shenzhen Graduated School, Harbin Institute of Technology, Shenzhen 518055, P.R. China
| | - Wei-Dong Fei
- State Key Laboratory for Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 P.R. China
| |
Collapse
|
14
|
Abstract
This review highlights various facet tailoring arts in perovskite structure oxides.
Collapse
Affiliation(s)
- Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Long Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| |
Collapse
|