1
|
Sadai S, Hashikawa Y, Murata Y. GeCl 2-Mediated Ring Contraction toward Endofullerenes. J Org Chem 2025; 90:4993-4999. [PMID: 40133074 DOI: 10.1021/acs.joc.5c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Germanium(II) dichloride dioxane complex (GeCl2·dioxane) is often utilized as a source of molecular germylene, i.e., GeCl2, which is known to undergo oxidative 1,4-addition to conjugated substrates. Inspired by this nature resembled to carbenes, we demonstrated a C═C bond formation from two carbonyl moieties engaged in an aromatic macrocycle. This germylene-mediated reaction enables us to realize efficient synthesis of endo[60]fullerenes through the consecutive ring contraction of open-[60]fullerenes.
Collapse
Affiliation(s)
- Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Pollit AA, Garg G, Tahir MN, Nyayachavadi A, Xiang P, Landry E, Ebied A, Rondeau-Gagné S. Supramolecular complexation of C 60 with branched polyethylene. Phys Chem Chem Phys 2024; 26:11073-11077. [PMID: 38529757 DOI: 10.1039/d4cp00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fullerene C60 is a ubiquitous material for application in organic electronics and nanotechnology, due to its desirable optoelectronic properties including good molecular orbital alignment with electron-rich donor materials, as well as high and isotropic charge carrier mobility. However, C60 possesses two limitations that hinder its integration into large-scale devices: (1) poor solubility in common organic solvents leading to expensive device processing, and (2) poor optical absorbance in the visible portion of the spectrum. Covalent functionalization has long been the standard for introducing structural tunability into molecular design, but non-covalent interactions have emerged as an alternative strategy to tailor C60-based materials, offering a versatile and tuneable alternative to novel functional materials and applications. In this work, we report a straightforward non-covalent functionalization of C60 with a branched polyethylene (BPE), which occurs spontaneously in dilute chloroform solution under ambient conditions. A detailed characterization strategy, based on UV-vis spectroscopy and size-exclusion chromatography was performed to verify and investigate the structure of the C60+BPE complex. Among others, our work reveals that the supramolecular complex has an order of magnitude higher molecular weight than its C60 and BPE constituents and points towards oxidation as the driving force behind complexation. The C60+BPE complex also possesses significantly broadened optical absorbance compared to unfunctionalized C60, extending further into the visible portion of the spectrum. This non-covalent approach presents an inexpensive route to address the shortcomings of C60 for electronic applications, situating the C60+BPE complex as a promising candidate for further investigation in organic electronic devices.
Collapse
Affiliation(s)
- Adam A Pollit
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Garima Garg
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| | - M Nazir Tahir
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| | - Audithya Nyayachavadi
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| | - Peng Xiang
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Eric Landry
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Amer Ebied
- PolyAnalytik Inc., 700 Collip Circle, Suite 202, London, Ontario, N6G 4X8, Canada
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, Essex Centre of Research (CORe), Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
3
|
Carreras A, Lorbach A, Bazan GC, Alemany P, Wu G, Garcia‐Garibay MA, Maverick EF. An Unusual Fullerene–Carbene Adduct: Thermal Motion, Disorder, or Both?**. Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abel Carreras
- Donostia International Physics Center Paseo Manuel de Lardizabal 4 ES-20018 Donostia-San Sebastian Spain
| | - Andreas Lorbach
- MCAT GmbH Raiffeisenstraße 35 DE-78166 Donaueschingen Germany
| | - Guillermo C. Bazan
- Department of Materials and Chemistry and Biochemistry University of California Santa Barbara Santa Barbara, postCode/>CA 93105-9510 USA
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física Universitat de Barcelona Carrer de Martí i Franquès, 1 ES-08028 Barcelona Spain
| | - Guang Wu
- Department of Chemistry University of California Santa Barbara Santa Barbara CA 93106-9510 USA
| | - Miguel A. Garcia‐Garibay
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90015-1569 USA
| | - Emily F. Maverick
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90015-1569 USA
| |
Collapse
|
4
|
Colin-Molina A, Jellen MJ, Rodríguez-Hernández J, Cifuentes-Quintal ME, Barroso J, Toscano RA, Merino G, Rodríguez-Molina B. Hydrogen-Bonded Crystalline Molecular Machines with Ultrafast Rotation and Displacive Phase Transitions. Chemistry 2020; 26:11727-11733. [PMID: 32243632 DOI: 10.1002/chem.202001156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Indexed: 01/28/2023]
Abstract
Two new crystalline rotors 1 and 2 assembled through N-H⋅⋅⋅N hydrogen bonds by using halogenated carbazole as stators and 1,4-diaza[2.2.2]bicyclooctane (DABCO) as the rotator, are described. The dynamic characterization through 1 H T1 relaxometry experiments indicate very low rotational activation barriers (Ea ) of 0.67 kcal mol-1 for 1 and 0.26 kcal mol-1 for 2, indicating that DABCO can reach a THz frequency at room temperature in the latter. These Ea values are supported by solid-state density functional theory computations. Interestingly, both supramolecular rotors show a phase transition between 298 and 250 K, revealed by differential scanning calorimetry and single-crystal X-ray diffraction. The subtle changes in the crystalline environment of these rotors that can alter the motion of an almost barrierless DABCO are discussed here.
Collapse
Affiliation(s)
- Abraham Colin-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Marcus J Jellen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Joelis Rodríguez-Hernández
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo, No. 140, Saltillo, Coahuila, 25294, México
| | - Miguel Eduardo Cifuentes-Quintal
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Rubén A Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
| |
Collapse
|
5
|
Curcio M, Farfalla A, Saletta F, Valli E, Pantuso E, Nicoletta FP, Iemma F, Vittorio O, Cirillo G. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020; 25:E2102. [PMID: 32365886 PMCID: PMC7249046 DOI: 10.3390/molecules25092102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures (CN) are emerging valuable materials for the assembly of highly engineered multifunctional nanovehicles for cancer therapy, in particular for counteracting the insurgence of multi-drug resistance (MDR). In this regard, carbon nanotubes (CNT), graphene oxide (GO), and fullerenes (F) have been proposed as promising materials due to their superior physical, chemical, and biological features. The possibility to easily modify their surface, conferring tailored properties, allows different CN derivatives to be synthesized. Although many studies have explored this topic, a comprehensive review evaluating the beneficial use of functionalized CNT vs G or F is still missing. Within this paper, the most relevant examples of CN-based nanosystems proposed for MDR reversal are reviewed, taking into consideration the functionalization routes, as well as the biological mechanisms involved and the possible toxicity concerns. The main aim is to understand which functional CN represents the most promising strategy to be further investigated for overcoming MDR in cancer.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Emanuele Valli
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| |
Collapse
|
6
|
Howe ME, Garcia-Garibay MA. The Roles of Intrinsic Barriers and Crystal Fluidity in Determining the Dynamics of Crystalline Molecular Rotors and Molecular Machines. J Org Chem 2019; 84:9835-9849. [DOI: 10.1021/acs.joc.9b00993] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Morgan E. Howe
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Miguel A. Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
7
|
Wang Y, Hong M, Bailey TS, Chen EYX. Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor. Molecules 2017; 22:E1564. [PMID: 28927009 PMCID: PMC6151805 DOI: 10.3390/molecules22091564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/10/2017] [Indexed: 11/16/2022] Open
Abstract
A synthetic method that taps into the facile Lewis base (LB)→Lewis acid (LA) adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene) (P3HT) macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC) LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA.
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Travis S Bailey
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA.
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA.
| |
Collapse
|
8
|
Abstract
Polymers with high C60 incorporations and intriguing properties are conveniently synthesized via adduct formation between polymeric Lewis bases and C60.
Collapse
Affiliation(s)
- Miao Hong
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
| | | |
Collapse
|