1
|
Singh SK, Joshi PR, Shaw RA, Hill JG, Das A. Interplay between hydrogen bonding and n→π* interaction in an analgesic drug salicin. Phys Chem Chem Phys 2018; 20:18361-18373. [PMID: 29942975 DOI: 10.1039/c8cp00655e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The competition and cooperation between weak intermolecular interactions are important in determining the conformational preferences of molecules. Understanding the relative strengths of these effects in the context of potential drug candidates is therefore essential. We use a combination of gas-phase spectroscopy and quantum-chemical calculations to elucidate the nature of such interactions for the analgesic salicin [2-(hydroxymethyl)phenyl β-d-glucopyranoside], an analog of aspirin found in willow bark. Of several possible conformers, only three are observed experimentally, and these are found to correspond with the three lowest energy conformers obtained from density functional theory calculations and simulated Franck-Condon spectra. Natural bond orbital analyses show that these are characterized by a subtle interplay between weak n→π* interaction and conventional strong hydrogen bond, with additional insights into this interaction provided by analysis of quantum theory of atoms in molecules and symmetry-adapted perturbation theory calculations. In contrast, the higher energy conformers, which are not observed experimentally, are mostly stabilized by the hydrogen bond with negligible contribution of n→π* interaction. The n→π* interaction results in a preference for the benzyl alcohol group of salicin to adopt a gauche conformation, a characteristic also found when salicin is bound to the β-glucosidase enzyme. As such, understanding the interplay between these weak interactions has significance in the rationalization of protein structures.
Collapse
Affiliation(s)
- Santosh K Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India.
| | | | | | | | | |
Collapse
|
2
|
Capello MC, Hernández FJ, Broquier M, Dedonder-Lardeux C, Jouvet C, Pino GA. Hydrogen bonds vs. π-stacking interactions in the p-aminophenolp-cresol dimer: an experimental and theoretical study. Phys Chem Chem Phys 2018; 18:31260-31267. [PMID: 27819104 DOI: 10.1039/c6cp06352g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The gas phase structure and excited state lifetime of the p-aminophenolp-cresol heterodimer have been investigated by REMPI and LIF spectroscopy with nanosecond laser pulses and pump-probe experiments with picosecond laser pulses as a model system to study the competition between π-π and H-bonding interactions in aromatic dimers. The excitation is a broad and unstructured band. The excited state of the heterodimer is long lived (2.5 ± 0.5) ns with a very broad fluorescence spectrum red-shifted by 4000 cm-1 with respect to the excitation spectrum. Calculations at the MP2/RI-CC2 and DFT-ωB97X-D levels indicate that hydrogen-bonded (HB) and π-stacked isomers are almost isoenergetic in the ground state while in the excited state only the π-stacked isomer exists. This suggests that the HB isomer cannot be excited due to negligible Franck-Condon factors and therefore the excitation spectrum is associated with the π-stacked isomer that reaches vibrationally excited states in the S1 state upon vertical excitation. The excited state structure is an exciplex responsible for the fluorescence of the complex. Finally, a comparison was performed between the π-stacked structure observed for the p-aminophenolp-cresol heterodimer and the HB structure reported for the (p-cresol)2 homodimer indicating that the differences are due to different optical properties (oscillator strengths and Franck-Condon factors) of the isomers of both dimers and not to the interactions involved in the ground state.
Collapse
Affiliation(s)
- M C Capello
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET - UNC. Dpto. de Fisicoquímica - Facultad de Ciencias Químicas - Centro Láser de Ciencias Moleculares - Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - F J Hernández
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET - UNC. Dpto. de Fisicoquímica - Facultad de Ciencias Químicas - Centro Láser de Ciencias Moleculares - Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - M Broquier
- Centre Laser de l'Université Paris Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, Institut d'Optique Graduate School, Univ. Paris-Saclay, F-91405 Orsay, France and Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, F-91405 Orsay, France
| | | | - C Jouvet
- Aix Marseille Université, CNRS, PIIM UMR 7345, Marseille, 13397, France
| | - G A Pino
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET - UNC. Dpto. de Fisicoquímica - Facultad de Ciencias Químicas - Centro Láser de Ciencias Moleculares - Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
3
|
Yuan C, Wu H, Jia M, Su P, Luo Z, Yao J. A theoretical study of weak interactions in phenylenediamine homodimer clusters. Phys Chem Chem Phys 2016; 18:29249-29257. [DOI: 10.1039/c6cp04922b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing dispersion-corrected density functional theory (DFT) calculations, we demonstrate the weak intermolecular interactions of phenylenediamine dimer (pdd) clusters, emphasizing the local lowest energy structures and decomposition of interaction energies by natural bond orbital (NBO) and atoms in molecule (AIM) analyses.
Collapse
Affiliation(s)
- Chengqian Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Photochemistry
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Photochemistry
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Meiye Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Photochemistry
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Peifeng Su
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Photochemistry
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Photochemistry
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
4
|
Pagba CV, McCaslin TG, Veglia G, Porcelli F, Yohannan J, Guo Z, McDaniel M, Barry BA. A tyrosine-tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette. Nat Commun 2015; 6:10010. [PMID: 26627888 PMCID: PMC4686667 DOI: 10.1038/ncomms10010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023] Open
Abstract
In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the α2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the β2 subunit. The conserved W48 β2 is ∼10 Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine–tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for β2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO· to W or another residue. Such a charge transfer mechanism implies a role for the β2 Y-W dyad in electron transfer. Tyrosine-tryptophan dyads are known to mediate electron transfer reactions in a range of different proteins. Here, the authors study a beta hairpin peptide, probing the tyrosine-tryptophan interaction and showing no hydrogen bonding but rather charge transfer between the tyrosyl radical and tryptophan'.
Collapse
Affiliation(s)
- Cynthia V Pagba
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Tyler G McCaslin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Fernando Porcelli
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - Jiby Yohannan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhanjun Guo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Miranda McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|