1
|
Pham TT, Pham TN, Chihaia V, Vu QA, Trinh TT, Pham TT, Van Thang L, Son DN. How do the doping concentrations of N and B in graphene modify the water adsorption? RSC Adv 2021; 11:19560-19568. [PMID: 35479230 PMCID: PMC9033564 DOI: 10.1039/d1ra01506k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the interaction of water and graphene is crucial for various applications such as water purification, desalination, and electrocatalysis. Experimental and theoretical studies have already investigated water adsorption on N- and B-doped graphene. However, there are no reports available that elucidate the influences of the N and B doping content in graphene on the microscopic geometrical structure and the electronic properties of the adsorbed water. Thus, this work is devoted to solving this problem using self-consistent van der Waals density functional theory calculations. The N and B doping contents of 0.0, 3.1, 6.3, and 9.4% were considered. The results showed that the binding energy of water increases almost linearly as a function of doping content at all concentrations for N-doped graphene but below 6.3% for B-doped graphene. In the linear range, the binding energy increases by approximately 30 meV for each increment of the doping ratio. Analyses of the geometric and electronic structures explained the enhancement of the water-graphene interaction with the variation in doping percentage.
Collapse
Affiliation(s)
- Thi Tan Pham
- Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Thanh Ngoc Pham
- Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Viorel Chihaia
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy Splaiul Independentei 202, Sector 6 060021 Bucharest Romania
| | - Quang Anh Vu
- Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Thuat T Trinh
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology NO-7491 Trondheim Norway
| | - Trung Thanh Pham
- Namur Institute of Structured Matter (NISM), Department of Physics, University of Namur 61 Rue de Bruxelles B-5000 Namur Belgium
| | - Le Van Thang
- Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Do Ngoc Son
- Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
García‐Muelas R, Rellán‐Piñeiro M, Li Q, López N. Developments in the Atomistic Modelling of Catalytic Processes for the Production of Platform Chemicals from Biomass. ChemCatChem 2018. [DOI: 10.1002/cctc.201801271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo García‐Muelas
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| | - Marcos Rellán‐Piñeiro
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| | - Qiang Li
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| |
Collapse
|
3
|
Steinmann SN, Ferreira De Morais R, Götz AW, Fleurat-Lessard P, Iannuzzi M, Sautet P, Michel C. Force Field for Water over Pt(111): Development, Assessment, and Comparison. J Chem Theory Comput 2018; 14:3238-3251. [PMID: 29660272 DOI: 10.1021/acs.jctc.7b01177] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water, (ii) a Gaussian term to improve the surface corrugation, and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted against a set of 210 adsorption geometries of water on Pt(111). The performance of GAL17 is compared to several other approaches that have not been validated against extensive first-principles computations yet. Their respective accuracy is evaluated on an extended set of 802 adsorption geometries of H2O on Pt(111), 52 geometries derived from icelike layers, and an MD simulation of an interface between a c(4 × 6) Pt(111) surface and a water layer of 14 Å thickness. The newly developed GAL17 force field provides a significant improvement over previously existing force fields for Pt(111)/H2O interactions. Its well-balanced performance suggests that it is an ideal candidate to generate relevant geometries for the metal/water interface, paving the way to a representative sampling of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface.
Collapse
Affiliation(s)
- Stephan N Steinmann
- Univ Lyon, Ecole Normale Supérieure de Lyon , CNRS Université Lyon 1, Laboratoire de Chimie UMR 5182 , 46 allée d'Italie , F-69364 Lyon , France
| | - Rodrigo Ferreira De Morais
- Univ Lyon, Ecole Normale Supérieure de Lyon , CNRS Université Lyon 1, Laboratoire de Chimie UMR 5182 , 46 allée d'Italie , F-69364 Lyon , France
| | - Andreas W Götz
- San Diego Supercomputer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 6302, CNRS) , Université de Bourgogne Franche-Comté , 9 Avenue Alain Savary , 21078 Dijon , France
| | - Marcella Iannuzzi
- Institut für Chemie , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | | | - Carine Michel
- Univ Lyon, Ecole Normale Supérieure de Lyon , CNRS Université Lyon 1, Laboratoire de Chimie UMR 5182 , 46 allée d'Italie , F-69364 Lyon , France
| |
Collapse
|
4
|
Kenmoe S, Biedermann PU. Water aggregation and dissociation on the ZnO(101̄0) surface. Phys Chem Chem Phys 2017; 19:1466-1486. [DOI: 10.1039/c6cp07516a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DFT studies reveal a hierarchy of water aggregates including dimers, quasi-1D ladders and a novel honeycomb-double monolayer.
Collapse
Affiliation(s)
- Stephane Kenmoe
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | | |
Collapse
|
5
|
Fischer JM, Mahlberg D, Roman T, Groß A. Water adsorption on bimetallic PtRu/Pt(111) surface alloys. Proc Math Phys Eng Sci 2016; 472:20160618. [PMID: 27843411 PMCID: PMC5095452 DOI: 10.1098/rspa.2016.0618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/22/2016] [Indexed: 11/12/2022] Open
Abstract
The adsorption of water on bimetallic PtRu/Pt(111) surface alloys has been studied based on periodic density functional theory calculations including dispersion corrections. The Ru atoms of the PtRu surface alloy interact more strongly with water than Pt atoms, as far as both single water molecules and ice-like hexagonal structures are concerned. Within the surface alloy layer, the lateral ligand effect reducing the local reactivity of the surface atoms with increasing Ru content is more dominant than the opposing geometric effect due to the tensile strain. The structural preference for the Ru atoms also prevails at room temperature, as ab initio molecular dynamics simulations show.
Collapse
Affiliation(s)
- Julia M. Fischer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David Mahlberg
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Tanglaw Roman
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
6
|
Naderian M, Groß A. From single molecules to water networks: Dynamics of water adsorption on Pt(111). J Chem Phys 2016; 145:094703. [DOI: 10.1063/1.4961870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maryam Naderian
- Institute of Theoretical Chemistry, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
7
|
Lin X, Evers F, Groß A. First-principles study of the structure of water layers on flat and stepped Pb electrodes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:533-43. [PMID: 27335744 PMCID: PMC4901556 DOI: 10.3762/bjnano.7.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/29/2016] [Indexed: 06/06/2023]
Abstract
On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water-water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O-H stretch region.
Collapse
Affiliation(s)
- Xiaohang Lin
- Institut für Theoretische Chemie, Universität Ulm, 89069 Ulm, Germany
| | - Ferdinand Evers
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Axel Groß
- Institut für Theoretische Chemie, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
8
|
Bellarosa L, García-Muelas R, Revilla-López G, López N. Diversity at the Water-Metal Interface: Metal, Water Thickness, and Confinement Effects. ACS CENTRAL SCIENCE 2016; 2:109-116. [PMID: 26937488 PMCID: PMC4768339 DOI: 10.1021/acscentsci.5b00349] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 05/24/2023]
Abstract
The structure and properties of water films in contact with metal surfaces are crucial to understand the chemical and electrochemical processes involved in energy-related technologies. The nature of thin water films on Pd, Pt, and Ru has been investigated by first-principles molecular dynamics to assess how the chemistry at the water-metal surface is responsible for the diversity in the behavior of the water layers closer to the metal. The characteristics of liquid water: the radial distribution functions, coordination, and fragment speciation appear only for unconfined water layers of a minimum of 1.4 nm thick. In addition, the water layer is denser in the region closest to the metal for Pd and Pt, where seven- and five-membered ring motifs appear. These patterns are identical to those identified by scanning tunneling microscopy for isolated water bilayers. On Ru densification at the interface is not observed, water dissociates, and protons and hydroxyl groups are locked at the surface. Therefore, the acid-base properties in the area close to the metal are not perturbed, in agreement with experiments, and the bulk water resembles an electric double layer. Confinement affects water making it closer to ice for both structural and dynamic properties, thus being responsible for the higher viscosity experimentally found at the nanoscale. All these contributions modify the solvation of reactants and products at the water-metal interface and will affect the catalytic and electrocatalytic properties of the surface.
Collapse
Affiliation(s)
- Luca Bellarosa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona
Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona
Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Guillem Revilla-López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona
Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona
Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
9
|
Garcia-Ratés M, López N. Multigrid-Based Methodology for Implicit Solvation Models in Periodic DFT. J Chem Theory Comput 2016; 12:1331-41. [PMID: 26771105 DOI: 10.1021/acs.jctc.5b00949] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuum solvation models have become a widespread approach for the study of environmental effects in Density Functional Theory (DFT) methods. Adding solvation contributions mainly relies on the solution of the Generalized Poisson Equation (GPE) governing the behavior of the electrostatic potential of a system. Although multigrid methods are especially appropriate for the solution of partial differential equations, up to now, their use is not much extended in DFT-based codes because of their high memory requirements. In this Article, we report the implementation of an accelerated multigrid solver-based approach for the treatment of solvation effects in the Vienna ab initio Simulation Package (VASP). The stated implicit solvation model, named VASP-MGCM (VASP-Multigrid Continuum Model), uses an efficient and transferable algorithm for the product of sparse matrices that highly outperforms serial multigrid solvers. The calculated solvation free energies for a set of molecules, including neutral and ionic species, as well as adsorbed molecules on metallic surfaces, agree with experimental data and with simulation results obtained with other continuum models.
Collapse
Affiliation(s)
- Miquel Garcia-Ratés
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avinguda dels Països Catalans 16, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avinguda dels Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
10
|
Carchini G, García-Melchor M, Łodziana Z, López N. Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study. ACS APPLIED MATERIALS & INTERFACES 2016; 8:152-160. [PMID: 26652180 DOI: 10.1021/acsami.5b07905] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rare-earth oxides (REOs) possess a remarkable intrinsic hydrophobicity, making them candidates for a myriad of applications. Although the superhydrophobicity of REOs has been explored experimentally, the atomistic details of the structure at the oxide-water interface are still not well understood. In this work, we report a density functional theory study of the interaction between water and CeO2, Nd2O3, and α-Al2O3 to explain their different wettability. The wetting of the metal oxide surface is controlled by geometric and electronic factors. While the electronic term is related to the acid-base properties of the surface layer, the geometric factor depends on the matching between adsorption sites and oxygen atoms from the hexagonal water network. For all the metal oxides considered here, water dissociation is confined to the first oxide-water layer. Hydroxyl groups on α-Al2O3 are responsible for the strong oxide-water interaction, and thus, both Al- and hydroxyl-terminated wet. On CeO2, the intrinsic hydrophobicity of the clean surface disappears when lattice hydroxyl groups (created by the reaction of water with oxygen vacancies) are present as they dominate the interaction and drive wetting. Therefore, hydroxyls may convert a intrinsic nonwetting surface into a wetting one. Finally, we also report that surface modifications, like cation substitution, do not change the acid-base character of the surface, and thus they show the same nonwetting properties as native CeO2 or Nd2O3.
Collapse
Affiliation(s)
- Giuliano Carchini
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Max García-Melchor
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | - Zbigniew Łodziana
- Institute of Nuclear Physics, Polish Academy of Sciences , ulica Radzikowskiego 152, PL-31-342 Krakow, Poland
| | - Núria López
- ICIQ - Institute of Chemical Research of Catalonia , Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
11
|
|
12
|
Garcı́a-Muelas R, Li Q, López N. Density Functional Theory Comparison of Methanol Decomposition and Reverse Reactions on Metal Surfaces. ACS Catal 2015. [DOI: 10.1021/cs501698w] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rodrigo Garcı́a-Muelas
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Paı̈sos Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Qiang Li
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Paı̈sos Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Paı̈sos Catalans 16, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|