1
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. IV. Connection of fine-grained and coarse-grained dynamics with the Stokes-Einstein and Stokes-Einstein-Debye relations. J Chem Phys 2024; 161:034114. [PMID: 39012809 DOI: 10.1063/5.0212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Applying an excess entropy scaling formalism to the coarse-grained (CG) dynamics of liquids, we discovered that missing rotational motions during the CG process are responsible for artificially accelerated CG dynamics. In the context of the dynamic representability between the fine-grained (FG) and CG dynamics, this work introduces the well-known Stokes-Einstein and Stokes-Einstein-Debye relations to unravel the rotational dynamics underlying FG trajectories, thereby allowing for an indirect evaluation of the effective rotations based only on the translational information at the reduced CG resolution. Since the representability issue in CG modeling limits a direct evaluation of the shear stress appearing in the Stokes-Einstein and Stokes-Einstein-Debye relations, we introduce a translational relaxation time as a proxy to employ these relations, and we demonstrate that these relations hold for the ambient conditions studied in our series of work. Additional theoretical links to our previous work are also established. First, we demonstrate that the effective hard sphere radius determined by the classical perturbation theory can approximate the complex hydrodynamic radius value reasonably well. Furthermore, we present a simple derivation of an excess entropy scaling relationship for viscosity by estimating the elliptical integral of molecules. In turn, since the translational and rotational motions at the FG level are correlated to each other, we conclude that the "entropy-free" CG diffusion only depends on the shape of the reference molecule. Our results and analyses impart an alternative way of recovering the FG diffusion from the CG description by coupling the translational and rotational motions at the hydrodynamic level.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Jawed A, Khan MN, Khan NA, Hakeem MA, Khan P. Thermodynamic Insights into Variation in Thermomechanical and Physical Properties of Isotactic Polypropylene: Effect of Shear and Cooling Rates. ACS OMEGA 2023; 8:36775-36788. [PMID: 37841128 PMCID: PMC10569009 DOI: 10.1021/acsomega.3c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023]
Abstract
In order to elucidate the effect of shear and cooling process on structural, thermomechanical, and physical properties of polymer melt, excess entropy, a thermodynamic quantity is calculated from radial distribution function generated from equilibrated parts of the molecular simulation trajectories. The structural properties are calculated, which includes the density of polypropylene melt, end to end distance, radius of gyration of the polypropylene polymer chain, and monomer-monomer radial distribution function. Non-equilibrium molecular dynamics simulation was employed to investigate the role of the applied shear rate on the properties of polypropylene. Furthermore, a range of cooling rates were employed to cool the melt. Thermomechanical properties, such as Young's modulus, and physical properties, such as glass transition temperature, were determined for different cases. Results showed that slow cooling and high shear substantially improved the Young's modulus and glass transition temperature of the i-PP. Furthermore, a two-body contribution to the excess entropy was used to elucidate the structure-property relationships in the polymer melt as well as the glassy state and the dependence of shear and cooling rate on these properties. We have used the Rosenfeld excess entropy-viscosity relationship to calculate the viscous behavior of the polymer under a steady shear condition.
Collapse
Affiliation(s)
- Ahmad
S. Jawed
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Nasir Khan
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem A. Khan
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammed A. Hakeem
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Parvez Khan
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Nikitiuk B, Salikova D, Kondratyuk N, Pisarev V. Pair entropy and universal viscosity scaling for molecular systems via molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Bell IH. Entropy Scaling of Viscosity - II: Predictive Scheme for Normal Alkanes. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2020; 65:10.1021/acs.jced.0c00749. [PMID: 34121765 PMCID: PMC8191377 DOI: 10.1021/acs.jced.0c00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a residual entropy value 6/10 of the way between the critical point and a value of -2/3 of Boltzmann's constant is shown to collapse the scaled viscosity for the family of normal alkanes. Based on this approach, a nearly universal correlation is proposed that can reproduce 95% of the experimental data for normal alkanes within ±18% (without removal of clearly erroneous data). This universal correlation has no new fluid-specific empirical parameters and is based on experimentally accessible values. This collapse is shown to be valid to a residual entropy half way between the critical point and the triple point, beyond which the macroscopically-scaled viscosity has a super-exponential dependence on residual entropy, terminating at the triple point. A key outcome of this study is a better understanding of entropy scaling for fluids with intramolecular degrees of freedom. A study of the transport and thermodynamic properties at the triple point rounds out the analysis.
Collapse
Affiliation(s)
- Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305
| |
Collapse
|
5
|
Rondina GG, Böhm MC, Müller-Plathe F. Predicting the Mobility Increase of Coarse-Grained Polymer Models from Excess Entropy Differences. J Chem Theory Comput 2020; 16:1431-1447. [DOI: 10.1021/acs.jctc.9b01088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo G. Rondina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
Dannenhoffer-Lafage T, Wagner JW, Durumeric AEP, Voth GA. Compatible observable decompositions for coarse-grained representations of real molecular systems. J Chem Phys 2019; 151:134115. [PMID: 31594316 DOI: 10.1063/1.5116027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Coarse-grained (CG) observable expressions, such as pressure or potential energy, are generally different than their fine-grained (FG, e.g., atomistic) counterparts. Recently, we analyzed this so-called "representability problem" in Wagner et al. [J. Chem. Phys. 145, 044108 (2016)]. While the issue of representability was clearly and mathematically stated in that work, it was not made clear how to actually determine CG observable expressions from the underlying FG systems that can only be simulated numerically. In this work, we propose minimization targets for the CG observables of such systems. These CG observables are compatible with each other and with structural observables. Also, these CG observables are systematically improvable since they are variationally minimized. Our methods are local and data efficient because we decompose the observable contributions. Hence, our approaches are called the multiscale compatible observable decomposition (MS-CODE) and the relative entropy compatible observable decomposition (RE-CODE), which reflect two main approaches to the "bottom-up" coarse-graining of real FG systems. The parameterization of these CG observable expressions requires the introduction of new, symmetric basis sets and one-body terms. We apply MS-CODE and RE-CODE to 1-site and 2-site CG models of methanol for the case of pressure, as well as to 1-site methanol and acetonitrile models for potential energy.
Collapse
Affiliation(s)
- Thomas Dannenhoffer-Lafage
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Jacob W Wagner
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Aleksander E P Durumeric
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Shrivastav G, Agarwal M, Chakravarty C, Kashyap HK. Thermodynamic regimes over which homologous alkane fluids can be treated as simple liquids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Concentration-dependent structure and dynamics of aqueous LiCl solutions: A molecular dynamics study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Yadav HOS, Shrivastav G, Agarwal M, Chakravarty C. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly. J Chem Phys 2016; 144:244901. [DOI: 10.1063/1.4954325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Prasad S, Chakravarty C. Tuning the tetrahedrality of the hydrogen-bonded network of water: Comparison of the effects of pressure and added salts. J Chem Phys 2016; 144:234509. [DOI: 10.1063/1.4953796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Jeong C, Douglas JF. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains. J Chem Phys 2015; 143:144905. [DOI: 10.1063/1.4932601] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|