1
|
Kosto Y, Barcaro G, Kalinovych V, Franchi S, Matvija P, Matolínová I, Prince KC, Matolín V, Skála T, Tsud N, Carravetta V. Role of the redox state of cerium oxide on glycine adsorption: an experimental and theoretical study. Phys Chem Chem Phys 2023; 25:6693-6706. [PMID: 36807663 DOI: 10.1039/d2cp06068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO2(111)/Cu(111) and Ce2O3(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by ab initio calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form via the carboxylate oxygen atoms bound to cerium cations. A third bonding point through the amino group was observed for the glycine adlayers on CeO2. In the course of stepwise annealing of the molecular adlayers on CeO2 and Ce2O3, the surface chemistry and decomposition products were analyzed and found to relate to different reactivities of glycinate on Ce4+ and Ce3+ cations, observed as two dissociation channels via C-N and C-C bond scission, respectively. The oxidation state of cerium cations in the oxide was shown to be an important factor, which defines the properties, electronic structure, and thermal stability of the molecular adlayer.
Collapse
Affiliation(s)
- Yuliia Kosto
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Giovanni Barcaro
- Institute of Physical Chemical Processes-CNR, via Moruzzi 1, 56124 Pisa, Italy
| | - Viacheslav Kalinovych
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Stefano Franchi
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14, km 163.5, Basovizza (Trieste), 34149, Italy
| | - Peter Matvija
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Iva Matolínová
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14, km 163.5, Basovizza (Trieste), 34149, Italy
| | - Vladimír Matolín
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Tomáš Skála
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Nataliya Tsud
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | - Vincenzo Carravetta
- Institute of Physical Chemical Processes-CNR, via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
2
|
Vlasova NM, Markitan OV. Complexation on the Oxide Surfaces: Adsorption of Biomolecules from Aqueous Solutions: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|