1
|
McKearney D, Roberts RJ, Mitchell D, Cheung JCF, Williams VE, Leznoff DB. Preferential Formation of Side‐Pocket‐Substituted Zinc Phthalocyanines Emitting Beyond 800 nm. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Declan McKearney
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - Ryan J. Roberts
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - Devon Mitchell
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - Jeffrey C. F. Cheung
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - Vance E. Williams
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - Daniel B. Leznoff
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
2
|
Openda YI, Matshitse R, Nyokong T. A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine-detonation nanodiamond-Ag nanoconjugates. Photochem Photobiol Sci 2020; 19:1442-1454. [PMID: 33000851 DOI: 10.1039/d0pp00075b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed viaπ-π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan-silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained. The photodynamic antimicrobial chemotherapy (PACT) activity of both phthalocyanines and nanoconjugates was tested against planktonic cells and biofilms of S. aureus. 2@DNDs-CSAg and 3@DNDs-CSAg caused effective killing with a log reduction of 9.74. In addition, PACT studies on single-species S. aureus biofilms were carried out with log reduction values of 5.12 and 5.27 at 200 μg mL-1 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| | | | | |
Collapse
|
3
|
Parthiban V, Yen PYM, Uruma Y, Lai PS. Designing Synthetic Glycosylated Photosensitizers for Photodynamic Therapy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Venkatesan Parthiban
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan (R.O.C.)
| | - Priscilla Yoong Mei Yen
- Department of Materials Science, National Institute of Technology, Yonago College, Yonago, Tottori 683-8502, Japan
| | - Yoshiyuki Uruma
- Department of Materials Science, National Institute of Technology, Yonago College, Yonago, Tottori 683-8502, Japan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan (R.O.C.)
| |
Collapse
|
4
|
Husain A, Ganesan A, Machacek M, Cerveny L, Kubat P, Ghazal B, Zimcik P, Makhseed S. Dually directional glycosylated phthalocyanines as extracellular red-emitting fluorescent probes. Dalton Trans 2020; 49:9605-9617. [PMID: 32542251 DOI: 10.1039/d0dt01180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of new non-aggregated phthalocyanines bearing multivalent saccharide moieties on their macrocyclic rims is of great interest. Many characteristics, including water-solubility, non-toxicity and others, can be feasibly obtained by these amphiphiles which can be considered as a key solution for demonstrating highly efficient photoactive materials in water. Herein, a family of five newly prepared dually directional Zn(ii) containing phthalocyanines (PcG1-4) and azaphthalocyanine (AzaPcG1) glycoconjugates is described. The unique spatial arrangement of the glucoside units based on peripherally hexadeca-(PcG1) and nonperipherally octa-(PcG4) macrocycles provides a fully monomeric behaviour along with a high fluorescence (ΦF∼ 0.21) in aqueous solution. These amphiphiles were characterized by low toxicity, and an extremely low cellular uptake was obtained due to the highly polar nature of the glucoside substituents. Accordingly, their potential as suitable photoactive chromophores for red-emitting extracellular fluorescent probes has been confirmed upon the evaluation of paracellular transport using a layer of MDCKII cells with the permeability coefficient fully comparable with an established evaluator of the integrity of the monolayer.
Collapse
Affiliation(s)
- Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 29:101607. [DOI: 10.1016/j.pdpdt.2019.101607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/18/2022]
|
6
|
Baygu Y, Gök Y. A highly water-soluble zinc(II) phthalocyanines as potential for PDT studies: Synthesis and characterization. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Mwanza D, Mvango S, Khene S, Nyokong T, Mashazi P. Exploiting Click Chemistry for the Covalent Immobilization of Tetra (4-Propargyloxyphenoxy) Metallophthalocyanines onto Phenylazide-Grafted Gold Surfaces. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Koçan H, Kaya K, Özçeşmeci İ, Sesalan BŞ, Göksel M, Durmuş M, Burat AK. Photophysicochemical, calf thymus DNA binding and in vitro photocytotoxicity properties of tetra-morpholinoethoxy-substituted phthalocyanines and their water-soluble quaternized derivatives. J Biol Inorg Chem 2017; 22:1251-1266. [DOI: 10.1007/s00775-017-1499-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
|
9
|
Mwanza D, Khene S, Mashazi P. Tetra (4-propargyloxyphenoxy)phthalocyanines: Facile synthesis, fluorescence and thermal properties. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Keleş T, Akyüz D, Biyiklioglu Z, Koca A. Electropolymerization of Metallophthalocyanines Carrying Redox Active Metal Centers and their Electrochemical Pesticide Sensing Application. ELECTROANAL 2017. [DOI: 10.1002/elan.201700249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Turgut Keleş
- Department of Chemistry; Faculty of Science, Karadeniz Technical University; Trabzon Turkey
| | - Duygu Akyüz
- Department of Chemistry, Faculty of Science and Letters; Marmara University; Istanbul Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry; Faculty of Science, Karadeniz Technical University; Trabzon Turkey
| | - Atıf Koca
- Department of Chemical Engineering, Faculty of Engineering; Marmara University; Istanbul Turkey
| |
Collapse
|
11
|
Öztaş B, Akyüz D, Koca A. Immobilization of alkynyl functionalized manganese phthalocyanine via click electrochemistry for electrocatalytic oxygen evolution reaction. Phys Chem Chem Phys 2017; 19:26121-26131. [DOI: 10.1039/c7cp04354f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modified electrodes (ITO/PANI-N3-MnPc and GCE/PANI-N3-MnPc) were constructed by click electrochemistry (CEC). The GCE/PANI-N3-MnPc electrode was tested as a potential electrocatalyst for water splitting reaction.
Collapse
Affiliation(s)
- B. Öztaş
- İstanbul Technical University
- Faculty of Science and Letters
- Department of Chemistry
- 34469 Maslak
- Turkey
| | - D. Akyüz
- Department of Chemical Engineering
- Engineering Faculty
- Marmara University
- Istanbul
- Turkey
| | - A. Koca
- Department of Chemical Engineering
- Engineering Faculty
- Marmara University
- Istanbul
- Turkey
| |
Collapse
|
12
|
Safonova EA, Martynov AG, Nefedov SE, Kirakosyan GA, Gorbunova YG, Tsivadze AY. A Molecular Chameleon: Reversible pH- and Cation-Induced Control of the Optical Properties of Phthalocyanine-Based Complexes in the Visible and Near-Infrared Spectral Ranges. Inorg Chem 2016; 55:2450-9. [PMID: 26910047 DOI: 10.1021/acs.inorgchem.5b02831] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel nonperipherally substituted tetra-15-crown-5-dibutoxyoxanthrenocyanines (H2, Mg, Zn), acting as chameleons with the unique properties of switchable absorption and emission in the near-infrared (NIR) spectral range have been synthesized and characterized by X-ray diffraction. The attachment of 15-crown-5-α-dibutoxyoxanthreno moieties to phthalocyanine is responsible for the high solubility of the resulting molecules and the red shift of the Q band to the NIR region and offers a unique possibility for postsynthetic modification of the optical properties of the molecules. Both aggregation of phthalocyanine and its participation in an acid-base equilibrium strongly alter their optical properties. For example, the absorption of complexes can be reversibly tuned from 686 up to 1028 nm because of the cation-induced formation of supramolecular dimers or subsequent protonation of meso-N atoms orf macrocycle, in contrast to peripherally substituted tetra-15-crown-5-phthalocyanines without oxanthrene moieties. The reversibility of these processes can be controlled by the addition of [2.2.2]cryptand or amines. All investigated compounds exhibit fluorescence with moderate quantum yield, which can also be switched between the ON and OFF states by the action of similar agents.
Collapse
Affiliation(s)
- Evgeniya A Safonova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Sergey E Nefedov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| | - Gayane A Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| |
Collapse
|
13
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|